收藏 分销(赏)

梁上运梁方式对大跨度组合梁受力特性的影响.pdf

上传人:自信****多点 文档编号:647850 上传时间:2024-01-23 格式:PDF 页数:8 大小:4.47MB
下载 相关 举报
梁上运梁方式对大跨度组合梁受力特性的影响.pdf_第1页
第1页 / 共8页
梁上运梁方式对大跨度组合梁受力特性的影响.pdf_第2页
第2页 / 共8页
梁上运梁方式对大跨度组合梁受力特性的影响.pdf_第3页
第3页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、No.2682023上海么路桥隧工程SHANGHAIHIGHWAYS-梁上运梁方式对大跨度组合梁受力特性的影响郭建春,陈志泉?,朱文,翟星艳,吴鹏辉,苏庆田(1.江西省交通投资集团有限责任公司,江西南昌3 3 0 0 2 5;2.中铁二十一局集团第三工程有限公司,陕西咸阳7 13 5 0 0;3.同济大学桥梁工程系,上海2 0 0 0 9 2)摘要:受限于运输及施工条件,山区桥梁的施工可采用整体预制-梁上运梁-整孔架设的施工方法。为了明确梁上运梁形式对组合梁受力性能的影响,现以江西祁婺高速主跨6 0 m的大跨度钢混组合梁为背景,建立单幅组合梁的板壳实体有限元模型,计算不同的梁上运梁施工方案下,

2、组合梁主要板件的受力特性,并对比分析梁上运梁的不同形式对施工过程中的组合梁受力的影响。结果表明:最不利工况下,主要受力板件均处于弹性状态,强度满足要求。双车跨双幅形式下,混凝土桥面板的压应力集中更为明显,且跨中截面近护栏侧的悬臂态混凝土受力更为不利。关键词:大跨度组合梁;梁上运梁;单车跨双幅;双车跨双幅;受力特性0引言山区地形复杂,起伏变化大,交通较为闭塞,桥梁施工整体环境差。在大多数山区中,公路桥梁施工以高空作业为主,难度大、危险系数高。因此,山区桥梁建设采用现浇施工方法较为困难。而采用梁上运梁、整孔架设施工方法的整体预制组合梁,可以较好地克服山区桥梁建设的不利因素,大大缩短工期。当前,国内

3、学者对梁上运梁的施工方法进行了诸多研究。2 0 0 5 年,浙江大学徐爱敏等 2 通过有限元方法,对梁上运梁时的混凝土箱梁的受力进行了空间仿真分析,提出了预防混凝土开裂的建议措施。2 0 12 年,唐小富等 3 采用理论计算及实桥试验的方式,对炮车梁上运梁的安全性进行了评估,并提出了相应的安全保障措施。2 0 17 年,王飞等 4 采用足尺模型试验,对非对称预制箱梁进行偏心加载。结果表明,运梁过程中,待测梁处于弹性变形状态。2 0 18 年,熊志洪等 5 建立了40 m预制箱梁的Midas有限元模型,对梁上运梁时的已架设箱梁的承载能力极限状态和正常使用极限状态进行了验算,保证了梁上运梁施工的安

4、全性。2 0 2 0 年,方华等 6 提出了多种陆地公路整孔预制箱梁桥的梁上运梁方案,并采用杆系及实体有限元模型,对4种运梁方案对箱梁受力的影响进行了对比分析,得出单车跨双幅运梁方式下的受力较佳。2 0 2 1年,收稿日期:2 0 2 3-0 3-0 3韦永昌 7 等针对超宽重型钢箱梁的运输问题,采用了梁上运梁的施工工艺,并对最不利运梁位置下的钢梁应力进行了验算。2 0 2 1年,王福兴等 8 针对大跨度薄壁U型梁梁上运梁的安全性问题,通过有限元分析和实桥测试的手段,验证了单车跨双幅梁梁上运梁施工方案的可行性。从以上研究可以看出,国内外学者虽然对梁上运梁的施工方法进行了研究,但大多集中在混凝土

5、梁及钢箱梁梁上运梁施工方案的安全性分析,针对大跨度整体预制钢-混组合梁的研究较少。江西祁婺高速南山路特大桥及花园特大桥均为主跨6 0 m的多跨桥面连续-钢梁简支钢-混组合梁桥,分别采用双车跨双幅及单车跨双幅的梁上运梁方案。本文以祁婺高速上的钢混组合梁桥为工程背景,建立板壳-实体有限元模型,对两种不同的梁上运梁形式下的组合梁受力进行了分析,并比较了各板件的受力及变形情况,得到了不同梁上运梁形式下的整体预制组合梁的受力特点,对同类工程的施工起到了借鉴作用。1工程概况本研究所述的整体预制钢-混组合梁,主跨跨径为6 0 m,梁高3 m,高跨比为1/2 0。结构体系采用钢梁简支-桥面连续。主梁采用等高工

6、字型组合梁,单片工字梁截面中心处梁高3 m。其中,钢梁高2.7 5 m,混凝土板厚0.2 5 m。钢主梁中心间距3.3 m、3.6 5 m。在No.2202369上海么路SHANGHAY桥隧工程墩顶及跨间位置,各片钢梁间,设置横向联结系,在墩台顶及跨中采用实腹式构造,跨间其它位置采用“K”型桁架构造。该桥总体布置图和主梁标准横断面图分别如图1和图2 所示。钢主梁采用工厂分节段制作,在桥头组拼场将纵梁栓接成整孔。采用高强度螺栓连接横梁与纵梁,形成半幅型钢梁结构。桥面板为钢筋混凝土结构,在桥头组拼场整体现浇于钢梁上,叠合成组合梁整体。600006110C21)10 009(21.2)1000(1L

7、.3)1500(24)1000C2L.3)1000(2L.26)611002L.50)140100940000100006099,1250_225022.5002250022.5002250022.50022.50022.50032.50022.50022.5002250横网爽1.250,990,600整孔品临时吊点整乳吊临时串点豆L3L1EL1LL11L1LILS八节费划分费福L6L2L2L3L1L1LLIL1LI凯11L160944005 0005.0005.005.0005.005.005.0005005.005.01横网5.00图1桥梁总体布置图(单位:mm)主梁标准横断面1/2主梁标

8、准横断面1/2主梁过渡墩顶横断面12.750127503.000+23.75023150+3000土铺装防水晟设计高程设计高程线125033003.6503.3001250125033003.6503002305.8751000587512750图2 主梁横断面布置图(单位:mm)通过桥头预制场内龙门吊或横移小车,将整跨预制完成的T型组合梁整孔置于运梁车上,运送至桥位处后,通过架桥机整孔架设就位。架设下一跨时,运梁车行驶于已架设就位的组合梁上,如图3 所示。南山路特大桥及花园大桥运梁车在已架设组合梁上行驶的横向位置分别如图4和图5 所示。为便于论述,将这两种梁上运梁的方式分别命名为双车跨双幅方

9、式和单车跨双幅方式。图3 梁上运梁立面示意图路线设计线图4南山路大桥梁上运梁方式-双车跨双幅2023No.270上海么路桥隧工程SHANGHAI HIGHWAYS-图5 花园大桥梁上运梁方式-单车跨双幅2有限元模型背景工程的整体预制钢-混组合梁存在如下特点:(1)该桥是目前世界上最大跨度的桥面连续整体预制钢混组合梁;(2)单孔组合梁及运梁车的总质量较大,超过49 0 t,梁上运梁时,已架设组合梁承受的荷载较大。因此,传统的杆系计算方法已无法准确计算混凝土桥面板的受力状态,故本研究采用ANSYS有限元软件来建立实体板壳模型其中,钢板件采用shell181单元,混凝土桥面板采用solid95单元,

10、“K”型撑采用link8单元。全桥共划分单元约9 万个,节点约19 万个。全桥模型如图6 所示。图6 单跨组合梁板壳实体模型实桥支座布置形式如图7 所示。单幅文准子面布遇图7 单跨组合梁支座布置图全桥模型考虑组合梁自重、架桥机支腿作用、运梁车作用的组合。组合梁自重按构件实际断面尺寸、并考虑构造因素计取,运梁车作用大小按运梁车实际重量及待架设组合梁重量考虑。计算过程主要考虑3 个工况:(1)架桥机支腿作用于组合梁;(2)运梁车前车行至组合梁跨中;(3)组合梁前端吊起,喂梁至后车行至跨中附近。相关工况受力示意图如图8、图9 所示。190t,190t17/m70t1.500+2 000.19.750

11、13500625017000(a)花园大桥受力图227t227t123t126t运梁车前车荷载140001600019001600(b)南山路特大桥受力图图8 运梁车前车行至组合梁跨中时组合梁受力示意图(单位:mm)山260t,260t3.7t/m17t/m261t15002.00013500+5800元135005500155002700(a)花园大桥受力图354t354t28t123t100.4t运梁车前车荷载运梁车后车荷载115009.00050001600019001600(b)南山路特大桥受力图图9 喂梁至后吊点与后天车平齐时示意图(单位:mm)3不同运梁方式下组合梁受力特性对比3.

12、1架桥机支腿作用下组合梁受力分析架桥机过孔就位后,架桥机中后支腿支撑于组合梁上。此时,在钢混组合梁自重及架桥机自重作用之下,组合梁变形曲线如图10 所示。由于两座桥施工时架桥机的型号及重量不同,支腿作用的位置有细微差2023No.271上海么缆SHANGHA桥隧工程)别。因此,单车跨双幅方案的架桥机支腿作用下,组合梁最大挠度大于双车跨双幅方案。二者的最大挠度分别为9 8.0 mm和8 5.6 mm,均位于跨中位置。单车跨双幅双车跨双幅20-40-6080-10001000020000300004000050.00060000纵桥向位置(mm)图10 组合梁挠度曲线图此时,钢梁下翼缘应力沿纵桥向

13、分布曲线如图11所示。应力分布图的整体形状与挠度曲线相似,均为抛物线形,但曲线在个别点处存在跳动。对比两条曲线发现,曲线跳跃位置一一对应,且间距为5 m左右,此为钢主梁的横隔板或加劲肋所在位置,存在应力集中现象。单车跨双幅方案下,钢梁下翼缘最大应力为89MPa;双车跨双幅方案下,钢梁下翼缘最大应力为100MPao120一单车跨双幅O一双车跨双幅100806040200100002000030000400005000060000纵桥向位置(mm)图11钢梁下翼缘纵桥向应力分布图跨中截面混凝土上表面纵桥向应力沿横桥向分布如图12 所示。两种运梁方式下,混凝土应力分布曲线形状一致:与钢梁结合部位的混

14、凝土应力较非结合部位的更小,边梁结合部的混凝土应力较中梁结合部的也更小。其中,单车跨双幅方案下,混凝土最大压应力为-7.6 5 MPa;双车跨双幅方案下,混凝土最大压应力为-8.6 MPa。-7.0单车跨双幅双车跨双幅-7.5-8.0-8.5-9.0-9.5-10.0020004000600080001000012000跨中截面横桥向位置.(mm)图12 路跨中截面混凝土应力横向分布图3.2运梁车前车行至跨中时组合梁受力分析当运梁车前车行至组合梁跨中时,运梁车后车尚未作用于组合梁,且架桥机作用荷载不变。此时,组合梁挠度曲线如图13 所示。双车跨双幅方案下,组合梁整体挠度较单车跨双幅更大,最大挠

15、度位于跨中,为140.3mm。单车跨双幅情况下,组合梁最大挠度为125mm。二者的挠度差值从架桥机支腿作用时的12.4mm增大至15.3 mm。0单车跨双幅双车跨双幅-20-4060-80-100-120-140-1600100002000030000400005000060000纵桥向位置(mm)图13 组合梁挠度曲线图No.2202372上海么路(桥隧工程SHANGHAI HIGHWAY此时,钢梁下翼缘应力沿纵桥向的分布如图14所示。双车跨双幅情况下,钢梁的整体应力水平高于运梁方式A。二者的最大应力分别为15 3.7 MPa和135.8MPa,均位于跨中附近。160单车跨双幅一双车跨双幅1

16、40120()100806040200010.00020.00030.000400005000060000纵桥向位置置(mm)图14钢梁下翼缘纵桥向应力分布图在运梁车前车行至组合梁跨中时,两种梁上运梁方式下,跨中截面混凝土桥面板上表面应力沿横桥向的分布如图15 所示。由图15 可以看出,该受力阶段,单车跨双幅情况下的跨中截面混凝土压应力水平高于双车跨双幅方案,且二者的应力横向分布规律产生了差异。(1)单车跨双幅方案下,从横向湿接缝侧到护栏侧,混凝土压应力逐渐减小。中梁结合部的混凝土压应力最小,为10.8 9 MPa;边梁结合部的混凝土压应力最大,为12.0 7 MPa。(2)双车跨双幅情况下,

17、从横向湿接缝侧到护栏侧,混凝土压应力先减小、后增大。边梁及中梁结合部的混凝土应力水平几乎一致。在与钢梁非结合处的运梁车前车单排车轮的作用处,混凝土压应力最大,为14.3MPa。单车跨双幅作用下,混凝土应力横向分布规律产生变化的原因,是由于运梁车前车作用于中梁混凝土处,导致边梁悬臂处的混凝土压应力高于与中梁结合的部位,如图16 所示。3.3组合梁前端吊起后车行至跨中时组合梁受力分析当运梁车前车行至中支腿时,待架设组合梁的前端被天车吊起,运梁车后车与天车同步向前喂送待架设组合梁。当运梁车后车上桥且行至跨中附近时,两种梁上运梁方式下,已架设组合梁的挠度曲线如图17所示。此时,单车跨双幅作用下,已架设

18、组合梁的挠度更大,最大挠度为15 3.9 mm。这是由于相比双车跨双幅,单车跨双幅时,运梁车后车在已架设组合梁上的位置更接近跨中,且架桥机支腿传递至已架设组合梁的荷载值更大。9单车跨双幅-10一双车跨双幅111415-16-17020004000600080001000012000横桥向位置(mm)图15 跨中截面混凝土应力横向分布图跨中截面混凝土上表面跨中藏面混凝土下表面4641-3.5-3-4.3-3.8-3.3-2.7-2.2图16单独运梁车前车作用时跨中混凝土应力图0单车跨双幅一双车跨双幅-20-40()号60-80-100-120-140-1600100002000030000400

19、005000060000纵桥向位置(mm)图17 组合梁挠度曲线图No.2202373上海么路SHANGHAI HIGHWAYS(桥隧工程)此时,钢梁下翼缘应力沿纵桥向分布如图18 所示。单车跨双幅下的钢梁的应力水平高于双车跨双幅,二者各自的最大应力分别为16 8.2 MPa和15 0.4MPa,分别位于跨中及1/3 跨附近。这是由于受限于后天车吊点的位置及运梁车大小的不同,两种运梁方式下的运梁车后车喂梁时能行进的最大距离不同。双车跨双幅下,运梁车后车最终行至待测梁的1/3 跨作用。180单车跨双幅160双车跨双幅14012010080604020010.0002000030000400005

20、000060000横桥向位置(mm)图18钢梁下翼缘纵桥向应力分布图当喂梁至两种梁上运梁方式各自所能到达的极限位置后,跨中截面的混凝土纵桥向应力沿横桥向分布如图19 所示。两种运梁方式下,二者的混凝土应力分布规律基本相同。从横向湿接缝侧到护栏侧,混凝土压应力水平不断升高,在与钢梁上翼缘结合的位置处,达到最大。两种运梁方式下,混凝土的最大压应力分别为-14.2 2 MPa和-12.7 8 MPa。-11.0单车跨双幅-11.5双车跨双幅-12.0-12.5CCCCO-13.0-13.5-14.0-14.5-15.0-15.5-16.002.0004000600080001000012000横桥向

21、位置(mm)图19 跨中截面混凝土应力横向分布图4结语本研究以祁婺高速6 0 m跨的钢混组合梁为依托,建立单跨组合梁的板壳实体有限元模型,对单车跨双幅和双车跨双幅这两种不同的梁上运梁方式下,组合梁的3 种施工阶段下,各板件的受力状态进行了对比分析,得到以下结论:(1)两种梁上运梁的施工方案下,组合梁的各板件受力均处于弹性状态。(2)在运梁车前车行至组合梁跨中时,双车跨双幅方案下,未与钢梁上翼缘结合处的混凝土压应力较结合处的更大。(3)其它工况下,两种梁上运梁方案中,近护栏的悬臂态混凝土受力较近纵向湿接缝处的混凝土受力更为不利。参考文献:1杨艳岗.山区高速公路桥梁施工技术及其特点分析 J.工程技

22、术研究,2 0 19,4(16):9 0-9 1.2徐爱敏,陈衡治,张治成.杭州湾大桥梁上运梁过程仿真分析J.中国铁道科学,2 0 0 5(0 5):2 2-2 5.3唐小富,官邑,刘伟纲,等.先简支后连续桥梁裸梁上运梁安全性评价 J.公路工程,2 0 12,3 7(0 2):142-145.4王飞,吕忠达,徐爱敏,等.运梁车单车跨双幅非对称预制箱梁偏心运梁试验 J.桥梁建设,2 0 17,47(0 6):6 6-7 1.5熊志洪,徐建.40 m预制箱梁梁上运梁有限元内力计算分析J.城市道桥与防洪,2 0 18(0 5):12 6-12 8+15.6方华,贾伟红,成立涛.陆地公路整孔预制箱梁桥

23、上运梁方案比选 J.中外公路,2 0 2 0,40(S2):155-160.7韦永昌,宋佩超,刘祥.超宽重型钢箱梁梁上运梁工艺 J.西部交通科技,2 0 2 1(0 3):12 7-12 9+16 0.8王福兴,王飞.大跨度薄壁U型梁梁上运梁安全性分析 J.铁道建筑技术,2 0 2 1(0 8):10-13+41.the expressway 220 kV high voltage line large volume curve cast-in-place continuous beam,cast-in-place continuous beam above theexisting 220 k

24、V Qingli,Qingjiu line,crossing Angle is 67 and 48.The power line in two places respectively from the originalground minimum height of 23.5 m and 23.92 m.In this paper,a complete construction scheme and process are proposed for the largevolume curve cast-in-place continuous beam under 220 kV high vol

25、tage line,and the structural design and calculation are carried outfor the structure system of the cast-in-place beam steel pipe Beret support.Ensure that the ZXH146-149 large volume curvecast-in-place continuous beam meets the construction safety,and provide reference for the subsequent constructio

26、n of similarcast-in-place beam under high pressure line.Key words:high voltage line;large volume;curved cast-in-place beam;support designComparative Analysis of Anti-floating Engineering Measures for Vehicle Underpass Structures in Different GeologicalEnvironmentsAbstract:Due to the large size of th

27、e vehicle underpass,the anti-floating pile with stronger anti floating capacity is often selected asthe anti-floating engineering measures.However,for areas with good engineering geology,the economic effect of anti-floating anchor isbetter,and the construction is more convenient.In this paper,the an

28、ti-floating design of the vehicle underpass on both sides of a riverin Lvan City is carried out.Due to the different geological conditions on both sides of the river,the anti-floating engineering measuresfor different geological conditions are compared and analyzed,and the economic and reasonable an

29、ti-floating engineering measures areselected.Through calculation and analysis,it is concluded that in the vehicle underpass on the North Bank of the river with rock geo-logical conditions,the anti-floating anchor is more economical and reasonable;In the vehicle underpass on the South Bank of the riv

30、erwith soil geological conditions,the anti-floating pile is more economical and reasonable.Key words:anti-floating anchor;anti-floating pile;anti-floating safety factor;vehicle underpassResearch on Flood Control Risk Analysis of Cross River Bridges.Abstract:Hefei is one of the 31 key flood control c

31、ities in China and 5 in the province.In order to carry out emergency flood controlwork for key river crossing bridges in the case of excessive floods in the Nanfei River channel of the urban area,and ensure that the riv-er crossing bridges are in a safe and controllable state,the first step is to an

32、alyze the rainfall characteristics and flood patterns of HefeiCity in the past 70 years.Afterwards a risk investigation on the protective facilities of the river crossing bridge will be conducted.Hy-drological element investigation and analysis,flood control spatial state analysis,and stress analysi

33、s under flood conditions at the threekey river crossing bridge sites will be carried out in the final stage.Whether the bridge meets the flood control design requirements willthe ultimate objective.The research results can provide reference for flood control risk analysis of similar river crossing b

34、ridges.Key words:river crossing bridge;flood control risks;rainfall;hydrological survey;force analysisComparative Study on Iterative Calculation Method and Tensioning Scheme of Suspender Tension of Rigid TiedArchBridgeAbstract:In order to study the efficient calculation method for determining the te

35、nsion of suspenders,a rigid tied arch bridge with amain span of 106 m is taken as an engineering case.Based on the numerical iteration theory,the nonlinear problem is transformed intoa series of linear problems,and an iterative calculation method controlled by a single index is proposed.By comparing

36、 the iterationtimes of five different tensioning schemes and the boom tensioning safety reserve,the best tensioning scheme is proposed and comparedwith the measured boom force data to verify the feasibility of the algorithm.The results show that different tensioning schemes can ob-tain the bridge co

37、mpletion Suspender Force that meets the requirements of engineering accuracy,but the safety reserve of suspendertensioning varies greatly.The best tensioning scheme is to select less iterations and higher safety reserve of tensioning;The iterativecalculation method has a wide range of application an

38、d simple algorithm principle,which is convenient for construction technicians tosolve the specific operation.It can be used as one of the tension optimization methods of arch bridge suspenders;Combined with themeasured data,the maximum deviation between the measured Suspender Force and the designed

39、Suspender Force of the completedbridge is 7%,which meets the specification control requirements,and proves that the algorithm can be used for on-site constructionguidance.Key words:rigid tied arch bridge;boom tension;iterative calculation;tensioning schemeInfluence of Beam Transport Form on Stress C

40、haracteristics of Large Span Composite BeamAbstract:Limited by transportation and construction conditions,the construction of bridges in mountainous areas can adopt the con-struction method of integral prefabrication-beam transportation-hole erection.In order to clarify the influence of the form of

41、transport-ing beam on the mechanical performance of composite beams,this paper takes the 60 m long-span steel-concrete composite beam ofthe main span of Qiwu Expressway in Jiangxi Province as the background,establishes the finite element model of the plate and shellWANG Guannan,CUI Yibin(53)HEMingxi

42、ng(5 7)DINGXiangwen(62).GUO Jianchun,CHEN Zhiquan,ZHU Wen,ZHAI Yan,WU Penghui,SU Qingtian(68)entity of a single composite beam,calculates the stress characteristics of the main plates of the composite beam under different con-struction schemes of transporting beam on the beam,and compares and analyz

43、es the influence of different forms of transporting beamon the stress of composite beams during construction.The results show that under the most unfavorable conditions,the main stressedplates are in elastic state,and the strength meets the requirements.The compressive stress concentration of concre

44、te bridge deck ismore obvious under the form of double car span and double width,and the cantilever concrete stress near the guardrail side of themid-span section is more unfavorable.Key words:large-span composite beam;transport beam on beam;bicycle span double;double car span double;force performan

45、ceYan an East Road Tunnel&Pudong Avenue Tunnel Integrated Fire Linkage Thinking and Research.XIN Qifeng(74)Abstract:After the opening of the Pudong Avenue Tunnel,it is connected to the Yanan East Road Tunnel,forming an Extra-longtunnel.Due to the construction of the two facilities in different areas

46、,there are various differences in design and equipment systemfunctions.Based on the requirements of integrated operation,this paper sort out problems,propose optimization and solutions.Com-bining the YOLO v8 neural network algorithm-based fire detection technology,it is applied in tunnel rain spray

47、video linkage,accu-rately positioned,and assisted in initiating relevant contingency plans through digital twin technology.Through experimental testing,the effectiveness of automatic linkage,manual operation,and optimization systems is compared to improve the accuracy of fire linkagebetween the Yan

48、an East Road Tunnel and the East West Passage.Key words:fire linkage;deep learning;AI video detection;YOLO v8;digital twinApplication of High Performance Materials in Maintenance of Hollow Slab BridgeAbstract:According to the structural characteristics of shallow hinge joint of hollow slab beam,dama

49、ge phenomena and existing prob-lems in current repair scheme,the R&D technical route is put forward,and fast-hardening high-performance hinge filling material andfast-hardening high-performance bridge deck paving material are developed.These two materials have good construction performance,early str

50、ength,high strength,high toughness,good interface and anti-dynamic load performance,and thus are suitable for maintenanceand emergency repair construction,and have been verified by actual engineering.The shear transfer capability of the articulated jointsand deck pavement repaired with these two mat

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服