1、山东省东阿县姚寨中学2012年中考数学模拟试题八(时间:120分钟)第卷(选择题 )一、选择题(本题共12小题)1下列说法正确的是()A、一定是正数B、是有理数C、是有理数D、平方等于自身的数只有12某省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )A3804.2103 B380.42104 C3.8042106 D3.80421073有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为( )A
2、 B C D4如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )5如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是( )CBAD6两条直线和相交于点A(2,3),则方程组的解是( )A B C DABCO7如图,O的半径为1,A、B、C是圆周上的三点,BAC36,则劣弧BC的长是( )A B C D8如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到则tan的值为A. B. C. D. 9如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A. B
3、C DABB10如图,直径AB为6的半圆,绕A点逆时针旋转60,此时点B到了点B,则图中阴影部分的面积是( )A. 3p B. 6pC. 5p D. 4p 11甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( )A.12天 B.14天 C.16天 D.18天12如图所示, 已知正方形ABCD的面积是8平方厘米,正方形EFGH的面积是62平方厘米,BC落在EH上,ACG的面积是4.9平方厘米,则ABE的面积是( )A. 0.5平方厘米
4、B. 2平方厘米 C. 平方厘米 D.0.9平方厘米第卷(非选择题)一、选择题(请把选择题的答案写到下面的表格中)题号123456789101112答案二、填空题(本题共5小题)13因式分解:a2b2abb 14已知、为两个连续的整数,且,则=_.15某生数学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩按30、30、40的比例计入总评成绩,则该生数学科总评成绩是_分.16正八边形的每个内角为 .17如图,在正方形ABCD内有一折线段,其中AEEF,EFFC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积_.三、解答题(本题共7个小题)18
5、19如图,ACAD,BACBAD,点E在AB上(1)你能找出 对全等的三角形;(2)请写出一对全等三角形,并证明202009年M市出口贸易总值为22.52亿美元,至2011年出口贸易总值达到50.67亿美元,反映了两年来M市出口贸易的高速增长(1)求这两年M市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测2012年M市的出口贸易总值21某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台)23201900售价(元/台)24201980(1)按国家政策,农民购买“家电下乡”产品享受售价13的政府补贴。农民田大伯到该商场购买了冰箱、彩电各一台,可以享受
6、多少元的补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的. 若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少? 22某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为i00分)如图所示(1)根据图示填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差。ABCEODF23如图,在ABC中,ABAC,以AB为直径的O交BC于点D,过点D作EFAC于点E,交AB的延长线于点F(1)
7、求证:EF是O的切线; (2)当BAC60时,DE与DF有何数量关系?请说明理由;ABCEODFABCEODF(3)当AB5,BC6时,求tanBAC的值24如图,在平面直角坐标系xOy中,直线AB与x轴交于点A, 与y轴交于点B, 且OA = 3,AB = 5点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QBBOOP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)求直线
8、AB的解析式;(2)在点P从O向A运动的过程中,求APQ的面积S与t之间的函数关系式(不必写出t的取值范围); (3)在点E从B向O运动的过程中,完成下面问题:四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;当DE经过点O时,请你直接写出t的值参考答案一、 选择题(共计40分.18小题每题3分,912小题每题4分)BCCCB BBBDB DD二、 填空题(每空4分,共计20分)13 14. 11 15.87 16. 13517. 三、解答题(共7个题,共计60分)18.(6分) 原式3 6分19.(8分) (1)3对2分 (2) 证明略 8分20(8分)(1)2分求得(
9、舍去)5分答:略 6分(2)8分 21.(9分)解:(1)(2420+1980)13=572,. 2分(2)设冰箱采购x台,则彩电采购(40-x)台,根据题意得 解不等式组得,. . 5分因为x为整数,所以x = 19、20、21,方案一:冰箱购买19台,彩电购买21台,方案二:冰箱购买20台,彩电购买20台,方案一:冰箱购买21台,彩电购买19台,设商场获得总利润为y元,则y =(2420-2320)x+(1980-1900)(40- x). .7分 =20 x + 3200200,y随x的增大而增大,当x =21时,y最大 = 2021+3200 = 3620. . .9分22. (9分)
10、 (1)班级平均数(分)中位数(分)众数(分)九(1)85九(2)851003分(2)九(1)班成绩好些,因为两个班的平均数都相同,九(1)班的中位数高,所以在平均数相同的情况下,中位数高的九(1)班成绩好些。(回答合理即可给分)5分(3)7分9分 23.(9分)(1)连结OD,证明ODAC即可得证 3分(2)DF2DE 证明ADDF 即可得证6分(3)求得AG= BG tanBAC2 9分24 (11分)解:(1)A(3,0),B(0,4)直线AB的解析式为3分(2)如图,过点Q作QFAO于点F. AQ = OP= t,由AQFABO,得 2分,6分(3)四边形QBED能成为直角梯形 如图,当DEQB时, DEPQ,PQQB,四边形QBED是直角梯形 此时AQP=90由APQABO,得. 解得 8分如图,当PQBO时,DEPQ,DEBO,四边形QBED是直角梯形此时APQ =90由AQPABO,得 即解得 10分(4)或 11分13用心 爱心 专心