资源描述
24.1.2垂直于弦的直径导学案
【学习目标】
1.理解圆的轴对称性.
2.理解垂径定理及其推论,并能应用它们解决有关弦的计算和证明问题.
【学习重点】垂直于弦的直径的性质、推论以及证明.
【学习难点】利用垂直于弦的直径的性质解决实际问题.
【学习过程】
【我能行】学生自学课本P80---P81,按照提示思考下面问题:
(一)情景导入:观看赵州桥视频。聪明的同学们,你能求出赵州桥桥拱所在圆的半径吗?
(二)自主探究:先自主探究,后小组交流。
探究一:把一个圆沿着它的任意一条直径所在的直线对折,重复几次,你发现了什么?由此你能得出什么结论?
我发现:
(1)把圆纸片沿着它的任意一条直径所在的直线对折叠时,两个半圆 .
(2)上面的实验说明:圆是____ __,对称轴是经过圆心的每一条____ ___.圆有 条对称轴.
探究二:请同学们按下面的步骤做一做:
第一步,把一个⊙O对折,使圆的两半部分重合,得到一条折痕CD;
第二步,在⊙O上任取一点A,过点A作CD折痕的垂线,再沿垂线折叠,得到新的折痕,其中点E是两条折痕的交点,即垂足;
第三步,将纸打开,新的折痕与圆交于另一点B,画出折痕AB、CD.观察你所折纸片:
(1)在上述的操作过程中,由圆的轴对称性你能得到哪些相等的线段和相等的弧?
(2)你能用一句话概括上述结论吗?
(3)请作出图形并用符号语言表述这个结论.
练习: 如下图,哪些能使用垂径定理?为什么?
【交流学】先独立完成,后小组交流。
1.垂径定理结构:条件:①直径CD过圆心O ②CD⊥AB 结论: ③AE=BE ④弧AC= 弧BC ⑤弧AD=弧BD.如果交换定理的题设和结论的部分语句,如① ③作为题设, ② ④ ⑤作为结论,命题成立吗?例如在⊙O中,CD是直径,AB是的弦,CD与AB交于点E.如果AE=BE,那么CD与AB垂直吗?
注意分情况讨论:
(1)若AB是⊙O的直径,CD与AB垂直吗?为什么?
(2)若AB不是⊙O的直径,CD与AB垂直吗?为什么?
思考:你能用一句话概括上述结论吗?
推论:
如果交换定理的题设和结论的部分语句,会有一些什么样的新结论呢?它们成立吗?
发现:
2.解决问题:同学们,现在能求出赵州桥所在圆的半径了吗?
如图,用表示主桥拱,设 所在圆的圆心为O,半径为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC与 相交于点D,根据前面的结论,D 是AB 的中点,C是AB 的中点,CD 就是拱高.你能求出半径R吗?
C
O
E
D
A
B
3.典型例题:
如图,D是⊙O的弦BC的中点,A是⊙O上一点,OA与BC
交于点E,已知AO=8,BC=12.
(1)求线段OD的长;
(2)当EO=BE时,求ED的长.
【学后思】
(一)课堂小结:同学们,通过本节课的学习,你有哪些收获?
(二)巩固练习
1.判断下面的论述是否正确(在相应的题号后面正确的标“√”错误的标或“×” )
①垂直于弦的直线平分这条弦( )
②平分弦的直线,平分弦所对的这条弧( )
③垂直于弦的直径平分这条弦( )
④平分弦的直径垂直于这条弦( )
2.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.
【师生评】
(一)课后作业:
1.教材89页习题24.1第9、12题
2.拓展练习:
(1) 教材89页习题24.1第10题
(2)直线AB与⊙O交于C、D两点,且OA=OB .AC
与BD相等吗?说说你的理由.
(二)课后反思
展开阅读全文