1、第7讲 分式方程【基础知识点:】1分式方程:分母中含有 的方程叫分式方程.2解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤: 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; 解所得到的关于辅助未知数的新方程,求出辅助未知数的值; 把辅助未知数的值代入原设中,求出原未知数的值; 检验作答.4分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所
2、列 ;(2)检验所求的解是否 .5易错知识辨析:(1) 去分母时,不要漏乘没有分母的项.(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3) 如何由增根求参数的值:将原方程化为整式方程;将增根代入变形后的整式方程,求出参数的值.【典例精析】1方程的解是x= 2. 已知与的和等于,则 , . 3解方程会出现的增根是( )A B. C. 或 D.4如果分式与的值相等,则的值是 5若分式的值为0,则x的值为 例1解方程:(2) (3) (4) 例3 若关于x的方程有增根,求m的值。例4 关于x的方程的解为x
3、=4,求a的值。例6 某中学库存960套旧桌凳,修理后捐助贫困山区学校现有甲、乙两个木工小组都想承揽这项业务经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天比甲小组多修8套;学校每天需付甲小组修理费80元,付乙小组120元(1)求甲、乙两个木工小组每天各修桌凳多少套(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助现有以下三种修理方案供选择: 由甲单独修理; 由乙单独修理; 由甲、乙共同合作修理你认为哪种方案既省时又省钱?试比较说明巩固练习:1方程的解是 分式方程的解是 2若关于方程无解,则的值是 3. 以下是方程去分母、去括号后的结
4、果,其中正确的是()A B. C. D.4分式方程的解是( )A B C D5.分式方程 的解是()A., B. , C. , D. 6若分式与1互为相反数,则x的值是 ;当x= 时,分式的值等于27解方程: 8)解方程: 1 = 0 -=。10.今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成 (1) 已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?(2) 在实际工作中,甲、乙两组合做完成这项工程的后,工程队又承包了东段的改造工程,
5、需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由11为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 12某镇道路改造工程,由甲、乙两工程队合作20天可完成甲工程队单独施工比乙工程队单独施工多用30天完成此项工程(1)求甲、乙两工程队单独完成此项工程各需要多
6、少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作 天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?13去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米?14.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 4