1、2023年6 月第43卷第2 期四川地质学报Vol.43No.2Jun.,2023川西江浪穹窒二叠纪变玄武岩锆石U-Pb年代学及地球化学余祥龙1,钟康惠,王雄荣,杨光源,王昌南,胡晓(1.成都理工大学,成都6 10 0 36;2 四川里伍铜业股份有限公司,四川甘孜6 2 6 2 0 0;3四川农业大学,成都6 11130)摘要:江浪窒二叠纪大理岩之中发育一套变玄武岩夹层,其主要成分为角闪石(约7 5%)和斜长石(约25%)。本文进行了锆石U-Pb年代学与地球化学研究,旨在修定原岩的形成年代与探究其成因。定年数据显示,变玄武岩中发育2 453.7 2 58.9Ma的捕获锆石。这一结果表明,变玄武
2、岩的原岩最有可能形成于晚二叠世,并且具有古老变质基底(2 453.7 2 12 5.0 Ma锆石)Rodinia超大陆会聚一裂解事件(1144.58 53.5Ma锆石)和加里东期岩浆活动(430.442 7.1Ma锆石)的地质记录。主微量元素分析数据显示,变玄武岩具有低的SiO2含量(45.53%40.94%)与高的Mg值(7 8.4 7 0.6)、Cr(16 7 0 10 1310 10)含量,其稀((La/Yb)=3.071.15)与微量元素配分型式平坦,表明原岩岩浆很可能起源于高度部分熔融的亏损地慢源区。岩石的La/Sm(2.341.16)、(T h/Y b)p M(1.951.2 3)
3、、(T h/T a)p M(0.7 40.43)和(La/Nb)pM(1.440.2 7)比值很低,表明岩浆演化过程中地壳物质的混染程度微弱。微量元素比值及构造环境判别图解表明,变玄武岩的化学构成同MORB相当,暗示原岩大概在古特提斯洋成熟的弧后盆地背景下形成。另外成分对比显示,江浪穹窒的二叠纪变玄武岩与峨眉山大火成岩省玄武岩浆活动无关。关键词:二叠纪变玄武岩;亏损地慢;弧后盆地;松潘一甘孜造山带;古特提斯洋中图分类号:P597DOI:10.3969/j.issn.1006-0995.2023.02.023松潘-甘孜造山带位于青藏高原东北缘(图1a),形成于古特提斯洋闭合阶段,记录了印支期以来
4、华北、扬子与塘陆块的收敛汇聚等构造活动(许志琴等,1992)。该造山带广泛发育巨厚的三叠纪复理石(515k m,R o g e r e t a l.,2 0 10)以及印支期花岗岩类(胡健民等,2 0 0 5)。长期以来,学者对松潘-甘孜造山带的岩浆作用研究以同碰撞花岗岩类为主(Roger etal.,2 0 0 4;胡健民等,2 0 0 5;万传辉等,2 0 11;袁静等,2 0 11),却鲜有涉及造山带内部出露比较有限的火山岩类,后者无疑能够为造山带演化历史提供深部地球动力学过程的重要信息(蔡宏明等,2 0 10)。江浪穹窒地处松潘-甘孜造山带南缘(图la),其构造层位发育较全、变形构造具
5、有代表性,是洞悉青藏高原东缘与扬子陆块西缘地质演化的重要窗口(颜丹平等,19 9 7、2002)。穹周缘的大理岩之中产出一套顺层发育的、变余枕状构造的变玄武岩(图2 a、b),可以为碰撞前的区域造山演化过程补充新资料。作者立足实地考查、配合岩相学观察,选取LA-ICP-MS锆石U-Pb定年以及岩石地球化学分析的方法,结合前人研究成果,意在修定该套变玄武岩原岩的形成年代与探究其成因。1地质背景松潘-甘孜造山带呈倒三角形状,西侧以收稿日期:2 0 2 2-0 6-0 1作者简介:余祥龙(198 7 一),男,四川射洪人,工程师,研究方向:地质调查与矿产勘查330文献标识码:Aa其理塘缝合带松潘-甘
6、孜造山带金沙羌塘地体沙江缝合带岛弧带中咱拉萨地体雅鲁藏布江缝合带印度板块L00kml1三叠纪西康群奥陶纪,江浪岩组正断层铜矿床22产状窖年样品位置图1江浪窒大地构造位置及区域地质图(修改自Yanetal.文章编号:10 0 6-0 995(2 0 2 3)0 2-0 330-0 9华北克拉通、阿尼玛卿二勉略缝合带。义敦扬子陆块i!叠纪P马拉溪组Pt中元克支代里伍岩群(b)421志留纪S甲坝岩组花岗岩3m NX52T.5Pw5862451431个14PtL44PT.+S¥36个PtL-3839F29S0F2260P卜43+十+S川西江浪穹二叠纪变玄武岩锆石U-Pb年代学及地球化学金沙江缝合带为界
7、与青藏高原毗邻,东缘以龙门山断裂带为界与扬子陆块相连,北部以秦岭造山带为界与华北陆块相邻(图1a)。该造山带受控于古特提斯造山作用,以发育巨厚的(515km)三叠系复理石为特征(Rogeretal.,2 0 10)。目前学术界对其主要物源区还存在不同认识,大致包括来自大别山超高压变质带(Nie etal,1994)以及扬子陆块(苏本勋等,2 0 0 6)两种观点。造山带主体变形过程发生于印支期,并出露大量的印支期花岗岩(胡健民等,2 0 0 5)。多种成因类型的花岗岩类已经被识别出来,例如I型(胡健民等,2 0 0 5)、A型(Zhangetal.,2 0 0 7)、埃达克质(Zhangeta
8、l.,2 0 0 6)和强过铝质(时章亮等,2 0 0 9)花岗岩。江浪穹核部地层里伍岩群主要为云母石英片岩、石英岩夹变基性火山岩。前人获得片状石英岩碎屑锆石U-Pb上交点年龄1437 Ma,斜长角闪岩全岩Sm-Nd等时线年龄16 7 7 16 7 4Ma,表明里伍岩群是一套中元古代的变质火山一沉积岩组合(颜丹平等,1997)。此外,该岩群之中发育一系列高品位(Cu平均2.5%)的Cu多金属矿床(图1b),被称为里伍式富铜矿床(代堰铬等,2 0 16)。穹翼部地层包括:奥陶纪江浪岩组仅分布于穹隆南缘,岩性为含砾石英岩夹石英片岩、千枚岩,主体构成一个韧性剪切滑脱带;志留纪甲坝岩组沿穹隆周缘呈环状
9、分布,为一套变硅质岩、碳质板岩夹变基性火山岩组合;二叠纪乌拉溪组分布于穹隆外缘,与甲坝岩组呈滑脱断层接触,岩性为大理岩夹变基性火山岩;三叠纪西康群以复理石陆源碎屑岩为主,与乌拉溪组呈韧性剪切带接触(颜丹平等,1997)。前人基于野外调查与构造解析工作提出江浪穹窒属变质核杂岩,并将其基本结构划分为前寒武纪堆垛层(里伍岩群)、古生代褶叠层(江浪岩组、甲坝岩组与乌拉溪岩组)及三叠纪西康群板岩带,不同构造地层系统之间发育环状拆离断裂带(颜丹平等,1997;Yanetal,2 0 0 3)。区域上岩浆活动强烈,主要为燕山期花岗岩及少量中一新元古代和二叠纪的基性火山岩。穹窒北部出露文家坪花岗质岩体(图1b
10、),岩性为中细粒似斑状黑云母花岗岩,锆石2 0 Pb/238U加权平均年龄(16 1.50.6)Ma(周家云等,2 0 13)。2样品采集与分析方法本文研究的变玄武岩为江浪穹窒二叠纪大理岩的夹层(图2 a)。变玄武岩:呈灰绿色,变余枕状构造(图2 b),主要矿物包括:角闪石约占7 5%,呈柱状或粒状,粒径10 0 0 50 m,可以观察到两组锐角相交的解理,部分已退变为绿泥石;斜长石约占2 5%,呈他形粒状或自形板状,粒径2 0 0 10 m,部分发育聚片双晶;石英占比1%,呈他形粒状,粒径约30 m,大概在成岩后蚀变产生;磁铁矿占比 1.0 G a 的分析结果采用2 0 7 Pb/20%Pb
11、年龄,4.5)和(Th/Yb)pM值(4.6)指示了地壳物质的混染(QiandZhou,2008)。变玄武岩的La/Sm值2.34 1.16,(Th/Yb)pm值1.95 1.2 3,表明岩浆侵位过程中基本不存在地壳物质的混染。岩浆混入上地壳物质之后,(Th/Ta)pm值与(La/Nb)pm值均在2 以上(Pengetal.,1994)。变玄武岩样品(Th/Ta)pm值0.7 4 0.43,(La/Nb)pm值1.44 0.2 7,同样显示了极低的地壳混染程度。因此,本文可以利用变玄武岩的微量元素组成来示踪原岩的岩浆源区。变玄武岩样品具有低的Si02含量(45.53%40.94%)与高的Mg0
12、(2 0.30%15.90%)、Cr(16 7 0 101310 10 )含量,Mg值(7 8.47 0.6)接近于原始玄武质岩浆(Mg=8173,Fr e y e t a l.,197 8),表明原岩岩浆很可能起源于地慢源区(Gaoetal.,1998)。在Th/Yb-Nb/Yb图解上,样品沿着MORB-OIB趋势分布(图8 a);在Nb-Zr图解上,样品落点位于亏损地慢附近(图8 b),进一步证明了上述推论。地质学家认为,随着地慢橄榄岩熔融程度增大,岩浆MgO含量逐渐升高、稀土元素分异逐渐减弱(Gill,2010)。变玄武岩具有高的Mg0含量与Mg值,稀土元素(La/Yb)值(3.0 7
13、1.15)偏低,稀土配分型式显示平坦(图5a),表明其原岩应该是慢源岩浆高度部分熔融的产物。4.4构造背景与地质意义已有的研究表明,扬子陆块西缘的峨眉山玄武岩形成于约2 6 0 Ma,包括高钛(Ti/Y500,M g =5331)与低钛(Ti/Y500,M g =6 7 44)两个系列(Xuetal.,2 0 0 1;X i a o e t a l.,2 0 0 4)。根据本文的主微量元素335木钾长石O XP-12黑云母OXP-13口XP-140.8FXP-15?XP-16XP-170.60.4钾云母0.2伊供利石高岭石绿泥君Ca.Na蒙脱石0.40.8(2Ca+Na+K)/Al(molar
14、)图6 K/AI-(2Ca+Na+K)/AI蚀变判别图解,底图据 Warren et al.(2007)(b)(c)15.013.0%/011.0OXP-12OXP-13口XP-14XP-15OXP-16?XP-17口5560657075Zr/X106图7 二叠纪变玄武岩部分主微量元素与Zr哈克图解¥NaCa富集,K玉尖K,Ca,Na丢失纳长石斜长岩1.2214.0口O.13.09.0212.07.011.0(e)(f)2.53509.01X/39.012.0300FH1.51.6O口口250F5560657075Zr/X10*65560657075Zr/X10*6亏损型地慢2023年6 月第
15、43卷第2 期分析数据(表2),变玄武岩样品Ti/Y值介于50 7 42 9,但Mg值(7 8.4 7 0.6)同峨眉山玄武岩完全不同。另外,两者稀土、微量元素配分型式差异显著(图5),暗示江浪穹窒二叠系变玄武岩并不是峨眉山大火成岩省玄武岩浆活动的产物。(a)大洋岛弧q/0.1MORB-OIB趋势N-MORB1图8 二叠纪变玄武岩Th/Yb-Nb/Yb(a)和Nb-Zr(b)图解,底图分别据Pearce(2 0 0 8)和Roexetal.(198 3)岩石地球化学分析表明,变玄武岩Ce/Nb比值(3.2 2 0.7 9)、Hf/Nb比值(0.58 0.2 1)、Zr/Nb比值(17.4 7.
16、0 0 )与 MORB 相近(Ce/Nb=3.22 1.81,Hf/Nb=1.23 0.24,Zr/Nb=1.88.8,Sun and McDonough,1989)。Fe O T-M g O-A l 2 O 3及Ti-Sm-V图解显示,变玄武岩的化学成分与MORB相当(图9)。需要指出,变玄武岩原岩如果形成是在洋中脊环境,其共生的应该是以硅质岩类为主的沉积岩,而不应该是碳酸盐岩(图2 a)。地质学家认为,初始弧后盆地发育具有岛弧性质的玄武岩,而成熟的弧后盆地产生接近MORB特征的玄武岩(Fretzdorffetal.,2 0 0 2)。在稀土和微量元素蛛网图上,变玄武岩样品配分型式整体与Sc
17、otia弧后盆地玄武岩相似,但明显缺乏岛弧火山岩富集大离子亲石元素、亏损高场强元素的特征(图5)。因此,本文认为江浪穹窒二叠纪变玄武岩原岩很可能形成于成熟的弧后盆地环境。Ti/50(a)四川地质学报(b)活动大陆边缘40富集源区9.01/qN30EMORB20OXP-12XP-13亏损源区Nb/YbFeOTVol.43No.2Jun.,2023富集型地过渡型地慢Zt/Nb=18.口XP-14XP-15OXP-16?XP-171010(b)100200Zr/10-6300O XP-12OXP-13口XP-14XP-15OXP-16+XP-17洋岛的扩张中心尚时MORB岛弧及活动大陆边缘Mgo图9
18、二叠纪变玄武岩构造环境判别图解,底图分别Pearceetal.(197 7)和Vermeesch(2 0 0 6)众所周知,古特提斯洋是晚古生代(泥盆纪开始)到早中生代存在于欧亚大陆和冈瓦纳大陆之间的古洋盆。松潘-甘孜造山带形成于古特提斯洋闭合阶段(许志琴等,1992),其主体闭合时间被限定为晚三叠世(莫宣学和潘桂棠,2 0 0 6)。近年来,一些学者对具有陆陆碰撞性质的岩浆岩的定年结果表明,哀牢山洋(古特提斯洋分支)闭合造山作用可能在晚二叠世 2 6 0 Ma就已经发生(李龚健等,2 0 13)。本文的研究结果显示,区域上甘孜-理塘洋的碰撞造山作用在晚二叠世尚未发生,暗示古特提斯洋不同洋盆的
19、闭合时限并不同步。5结论(1)江浪穹隆二叠纪变玄武岩夹层形成于晚二叠世,时代不早于2 59Ma。(2)变玄武岩的锆石U-Pb年龄谱表明,江浪穹窒可能存在太古宙一古元古代的变质基底,并且记录了Rodinia超大陆会聚一裂解事件以及加里东期岩浆活动。(3)原岩岩浆起源于亏损地慢,岩浆演化过程中遭受地壳物质的混染程度极低。336OIBMORBIABAl,0,50XSmVV川西江浪穹二叠纪变玄武岩锆石U-Pb年代学及地球化学(4)变玄武岩的化学组成与MORB相当,原岩很可能形成于古特提斯洋成熟的弧后盆地,且并非峨眉山大火成岩省玄武岩浆活动的产物。参考文献:蔡宏明,张宏飞,徐旺春,时章亮,袁洪林.2 0
20、 10.松潘带印支期岩石圈拆沉作用新证据:来自火山岩岩石成因的研究J.中国科学:地球科学,40(11):1518-1532.崔加伟,郑有业,田立明,孙君一,董俊2 0 16 松潘一甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征:对物源及构造环境的启示J.矿物岩石地球化学通报,35(4):7 19-7 42.代堰铅,张惠华,朱玉娣,沈战武,李同柱,马东。2 0 16.扬子陆块西缘江浪穹隆及“里伍式”富铜矿床研究进展与问题J地球科学与环境学报,38(1):6 6-7 8.杜利林,耿元生,杨崇辉,王新社,周喜文.2 0 0 7.扬子地台西缘康定群的再认识:来自地球化学和年代学
21、证据J.地质学报,8 1(11):156 2-157 7耿元生,陆松年2 0 14.中国前寒武纪地层年代学研究的进展和相关问题J地学前缘,2 1(2):10 2-118.郭春丽,王登红,陈毓川,赵支刚,王彦斌,付小方,傅德明:2 0 0 7.川西新元古代花岗质杂岩体的锆石SHRIMPU-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义J.岩石学报,2 3(10):2 457-2 47 0.胡健民,孟庆任,石玉若,渠洪杰。2 0 0 5。松潘一甘孜地体内花岗岩锆石SHRIMPU-Pb定年及其构造意义J.岩石学报,2 1(3):8 6 7-8 8 0.刘兵兵,彭头平,范蔚茗,董晓涵
22、,彭世利,武利民2 0 13哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约J岩石学报,2 9(11):38 8 3-390 0.李惠民,陈志宏,相振群,李怀坤,陆松年,周红英,宋彪2 0 0 6 秦岭造山带商南一西峡地区富水杂岩的变辉长岩中斜锆石与锆石U-Pb同位素年龄的差异J地质通报,2 5(6):6 53-6 59.莫宣学,潘桂棠.2 0 0 6.从特提斯到青藏高原形成:构造一岩浆事件的约束地学前缘J,13(6):43-51.时章亮,张宏飞,蔡宏明.2 0 0 9.松潘造山带马尔康强过铝质花岗岩的成因及其构造意义J地球科学,34(4):56 9-58 4.四川省
23、地质矿产局19 9 1四川省区域地质志M.北京:地质出版社1-6 8 0.苏本勋,陈岳龙,刘飞,王巧云,张宏飞,兰中伍.2 0 0 6.松潘一甘孜地块三叠系砂岩的地球化学特征及其意义J.岩石学报,2 2(4):96 1-97 0.万传辉,袁静,李芬香,鄢圣武2 0 11松潘一甘孜造山带南段晚三叠世兰尼巴和羊房沟花岗岩岩石学、地球化学特征及成因J.岩石矿物学杂志,30(2):18 5-198.许志琴,侯立玮,王宗秀1992 中国松潘带的造山过程M.北京:地质出版社,颜丹平,宋鸿林,傅昭仁1997.扬子地台西缘变质核杂岩带M北京:地质出版社.颜丹平,周美夫,宋鸿林,John,M A LPA S.2
24、 0 0 2.华南在Rodinia古陆中位置的讨论:扬子地块西缘变质一岩浆杂岩证据及其与Seyche1les地块的对比J地学前缘,9(4):2 49-2 56.袁静,肖龙,万传辉,高睿.2 0 11松潘一甘孜南部放马坪一三岩龙花岗岩的成因及其构造意义J地质学报,8 5(2):19 5-2 0 6.张惠华,代堰,王昌南,杨光源,唐高林,梁鲸。2 0 16 川西江浪穹隆甲坝岩组角闪岩地球化学特征、锆石U-Pb定年及地质意义J矿物岩石,36(2):47-54.周家云,谭洪旗,龚大兴,朱志敏,罗丽萍.2 0 13.川西江浪穹隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究J.矿物岩
25、石,33(4):42-52.Fretzdorff S,Livermore R A,Devey C W et al.,2002.Petrogenesis of the back-arc East Scotia Ridge,South Atlantic OceanJJ.Journalof Petrology,43:1435-1467.FreyF,Green D,Roy S.1978.Integrated models of basalt petrogenesis:A study of quartz tholeites to olivine melilites from South EasternA
26、ustralia utilizing geochemical and experimental petrological data.Journal of Petrology,19:46 3-513.Gao S,Zhang B R,Jin Z M et al.,1998.How mafic is the lower continental crust?JJ.Earth and Planetary Science Letters,161:101-117.Gil1 R.2010.Igneous rocks and processes:A practical guideMJ.Chichester:Wi
27、ley-Blackwell.1-472.Hoskin P W O and Schaltegger U.,2003.The composition of zircon and igneous and metamorphic petrogenesisJ.Reviews in mineralogy andgeochemistry,53:27-62.Irvine T and Baragar W.1971.A guide to the chemicalclassification of the common volcanic rocksJJ.Canadian Journal of Earth Scien
28、ces,8:523-548.Li X H,Zhu W G,Zhong H et al.,2011.The Tongde picritic dikes in the western Yangtze block:Evidence for ca.800 Ma mantle plume magmatismin south China during the breakup of RodiniaJ.The Journal of Geology,118:509-522.LizX,Bogdanova SV,Collins AS et al.,2008.Assembly,configuration,and br
29、eak-up history of Rodinia:A synthesisJJ.PrecambrianResearch,160:179-210.Liu Y S,Gao S,Hu Z C et al.,2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-NorthChina Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenolithsJJ.Journal o
30、f Petrology,51:537-571.Ma L,Jiang S Y,Hofmann A W et al.,2014.Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong peninsula:A consequenceof rapid lithospheric thinning beneath the North China cratonJ.Geochimica et Cosmochimica Acta,124(1):250-271.Nie S,Yin A,Rowley D B et al.,199
31、4.Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganziflysch sequence,central ChinaJ.Geology,22:999-1002.Pearce J A.2008.Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archeanoceanic crustJ.Lithos
32、,100:14-48.Pearce T H,Gorman B E,Birkett T C.1977.The relationship between major element chemistry and tectonic environment of basic andintermediate volcanic rocksJ.Earth and Planetary Science Letters,36:121-132.Peng Z X,MahoneY J,Hooper P et al.,1994.A role for lower continental crust in flood basa
33、lt genesis?Isotopic and incompatible elementstudy of the lower six formations of the western Deccan TrapsJ.Geochimica et Cosmochimica Acta,58:267-288.Polat A,Hofmann A W,Rosing M T.2002.Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt,West Greenland:Geochemicalevidence for intra-o
34、ceanic subduction zone processes in the early EarthJJ.Chemical Geology,184:231-254.Qi L and Zhou M F.2008.Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province,3372023年6 月第43卷第2 期SW ChinaJ.Chemical Geology,248(1-2):83-103.Reichow M K,Saunde
35、rs A D,White R V et al.,2005.Geochemistry and petrogenesis of basalts from the West Siberian Basin:An extensionof the Permo-Triassic Siberian Traps,RussiaJ.Lithos,79:425-452.Roex A P L,Dick H J B,Erlank A J et al.,1983.Geochemistry,Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Ind
36、ianRidge Between the Bouvet Triple Junction and 11 Degrees EastJ.Journal of Petrology,24:267-318.Roger F,Malavieille J,Leloup P H et al.,2004.Timing of granite emplacement and cooling in the Songpan-Garz fold belt(easternTibetan Plateau)with tectonic implicationsJJ.Journal of Asian Earth Sciences,22
37、(5):465-481.Roger F,Jolivet M,Malavieille J.2010.The tectonic evolution of the Songpan-Garze(North Tibet)and adjacent areas from Proterozoicto Present:A synthesisJJ.Journal of Asian Earth Sciences,39(4):254-269.Sun S S and McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts:Impli
38、cations for mantle composition andprocessesJ.Geological Society London Special Publications,42:313-345.Sun W H and Zhou M F.2008.The 860 Ma Cordilleran-type Guandaoshan diorite pluton in the Yangtze Block,SW China:Implications forthe origin of Neoproterozoic magmatismJJ.The Journal of Geology,116:23
39、8-253.Taylor S R and Mclennan S M.1985.The continental crust:Its composition and evolutionEMI.Oxford:Blackwell.1-328.Vermeesch P.2006.Tectonic discrimination diagrams revisitedJJ.Geochemistry Geophysics Geosystems,7:466-480.Warren I,Simmons S F,Mauk J L.2007.Whole-rock geochemical techniques for eva
40、luating hydrothermal alteration,mass changes,andcompositional gradients associated with epithermal Au-Ag mineralizationJJ.Economic Geology,102:923-948.Winchester J A and Floyd P A.1977.Geochemical discrimination of different magma series and their differentiation products using immobileelementsJ.Che
41、mical Geology,20:325-343.Xiao L,Xu Y G,Mei H J et al.,2004.Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneousprovince,SW China:Implications for plume-lithosphere interactionJJ.Earth and Planetary Science Letters,228:525-546.Xu Y G,Chung S L,Jahn B M et al.,
42、2001.Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan floodbasalts in southwestern ChinaJ.Lithos,58:145-168.Yan D P,Zhou M F,Song H L et al.,2003.Structural style and tectonic significance of the Jianglang dome in the eastern margin of theTibetan Plateau,ChinaJ
43、.Journal of Structural Geology,25(5):765-779.Zhang H F,Zhang L,Harris N et al.,2006.U-Pb zircon ages,geochemical and isotopic compositions of granitoids in Songpan-Garze FoldBelt,eastern Tibet Plateau:Constraints on petrogenesis,nature of basement and tectonic evolutionJ.Contributions to Mineralogy
44、andPetrology,152:75-88.Zhang HF,Parrish R,Zhang L et al.,2007.A-type granite and adakitic magmatism association in Songpan-Garze fold belt,eastern TibetanPlateau:Implication for lithospheric delaminationJJ.Lithos,97:323-335.Zhou M F,Yan D P,Kennedy A K et al.,2002.SHRIMP U-Pb zircon geochronological
45、 and geochemical evidence for Neoproterozoic arc-magmatismalong the western margin of the Yangtze Block,South ChinaJJ.Earth and Planetary Science Letters,196:51-67.Zircon U-Pb Chronology and Geochemistry of the PermianMeta-basalt in the Jianglang Dome,Western Sichuan ProvinceYU Xiang-longl-2(1-Cheng
46、du University of Technology,Chengdu 610066;2-Sichuan Liwu Copper Mining Company;Ganzi,Sichuan 626200;3-Sichuan Agricultural University,Chengdu 611130)Abstract:A meta-basalt interlayer is developed in the Permian marble of Jianglang Dome,its majorcomponents are amphibole(about 75%)and plagioclase(abo
47、ut 25%).Zircon U-Pb chronology and geochemistrywere performed to explore the formation age and petrogenesis of its protolith.Dating data show that trappedzircons from 2453.7Ma to 258.9Ma were developed in the meta-basalt,indicating that the meta-basalt wasprobably formed in the late Permian.The rock
48、 also has the geological records of ancient metamorphosedbasement(2453.7 Ma2125.0 Ma zircons),Rodinia Supercontinent assembly-breakup(1144.5 Ma853.5 Mazircons)and Caledonian magmatic activities(430.4 Ma427.1 Ma zircons).Major and trace element analysesshow low Si02 contents(45.53%40.94%)and high Mg*
49、values(78.470.6)and Cr(167010-61310 xi0%)abundances,with flat REE(La/Yb)=3.071.15)and trace element profiles.These geochemical featuresindicate that the protolith magma was probably derived from highly partial melting of a depleted mantle.Themeta-basalt show extremely low La/Sm(2.341.16),(Th/Yb)pM(1
50、.951.23),(Th/Ta)pM(0.740.43)and(La/Nb)pM(1.440.27)ratios,suggesting weakly crustal contamination.Trace element ratios and tectonicdiscriminations display similar chemical compositions to those of MORB,indicating a mature back-arc basinsetting in the Paleo-Tethys ocean.Compared with the Emeishan basa