收藏 分销(赏)

响应面优化石榴皮多酚提取物提取工艺及其活性研究.pdf

上传人:自信****多点 文档编号:594175 上传时间:2024-01-10 格式:PDF 页数:11 大小:2.76MB
下载 相关 举报
响应面优化石榴皮多酚提取物提取工艺及其活性研究.pdf_第1页
第1页 / 共11页
响应面优化石榴皮多酚提取物提取工艺及其活性研究.pdf_第2页
第2页 / 共11页
响应面优化石榴皮多酚提取物提取工艺及其活性研究.pdf_第3页
第3页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023 年 6 月第 3 期228238甘肃农业大学学报 JOURNAL OF GANSU AGRICULTURAL UNIVERSITY第5 8卷双 月 刊响应面优化石榴皮多酚提取物提取工艺及其活性研究张茂栖,涂倩,杨育静,简玉英,谢大明,黄茂微,包沅鑫,曾珍,刘韫滔,李诚(四川农业大学食品学院,四川 雅安 625014)摘要:【目的】优化从石榴皮中提取多酚的工艺,并探究3种常见石榴皮提取物(会理水晶石榴(HL)、突尼斯软子石榴(TN)、云南蒙自甜石榴(MZ)的组成成分和抗氧化抑菌活性。【方法】采用单因素试验、响应面分析法研究提取时间、乙醇浓度、温度、料液比对总酚含量的影响并确定最优提取工

2、艺,核磁共振法分析石榴皮提取物成分,通过抗氧化抑菌试验,评估其抗氧化抑菌能力。【结果】最佳提取条件为:提取时间77 min、乙醇浓度36.0%、温度66.9、料液比1 37。在此条件下,总酚含量为(242.0261.94)mgGAE/g,。石榴皮提取物的主要成分为糖类、有机酸、酚类化合物等物质。抗氧化能力依次为HLTNMZ丁基羟基茴香醚。3种细菌对石榴皮提取物的敏感度依次为:荧光假单胞菌金黄色葡萄球菌大肠杆菌,抗菌能力依次为HLTN=MZ。【结论】HL的抗氧化抑菌能力最强,研究结果为石榴皮提取物提取及利用提供了实验依据。关键词:石榴皮提取物;提取优化;1H-NMR;抗氧化性能;抗菌性能中图分类

3、号:TS255 文献标志码:A 开放科学(资源服务)标识码(OSID):文章编号:1003-4315(2023)03-0228-11Studies on extraction process optimization and activities of polyphenol matter from pomegranate peel by response-surface methodologyZHANG Maoxi,TU Qian,YANG Yujing,JIAN Yuying,XIE Daming,HUANG Maowei,BAO Yuanxin,ZENG Zhen,LIU Yuntao,L

4、I Cheng(College of Food Science,Sichuan Agricultural University,Yaan 625014,China)Abstract:【Objective】The study aimed to optimize extraction process of polyphenols from pomegranate peel,and to investigate the components of three common extracts(Huili crystal pomegranate(HL),Tunisian soft pomegranate

5、(TN),Yunnan Mengzi sweet pomegranate(MZ)and their antioxidant and antibacterial activities.【Method】Single factor test were designed to study the effects of extraction time,ethanol concentration,temperature and solid-liquid ratio on total phenol content through response-surface analysis,followed by d

6、etermining optimal extraction process.Nuclear magnetic resonance was used to analyze the components of pomegranate peel extracts,and the antioxidant and bacteriostatic abilities of the extracts were evaluated by antioxidant and bacteriostatic test.【Result】The optimal extraction conditions were as DO

7、I:10.13432/ki.jgsau.2023.03.028第一作者:张茂栖,硕士研究生。E-mail:通信作者:李诚,教授,博士生导师,从事畜产品加工与食品质量安全研究。E-mail:基金项目:四川省重点研发项目(2020YFN0147)。收稿日期:2022-03-02;修回日期:2022-04-22follows:extraction time for 77 min,ethanol concentration of 36.0%,temperature at 66.9 C,solid-liquid ratio of 1 37.Under these conditions,the total

8、 content of phenols was(242.0261.94)mgGAE/g.The main components of pomegranate peel extract were sugars such as pectin,organic acids,phenolic compounds,etc.The antioxidant capacity of these extracts ranged as follows:HL TN MZ butylated hydroxyanisole.The susceptibility of the three bacteria to pomeg

9、ranate peel extract ranged in the following order:Pseudomonas fluorescens Staphylococcus aureus Escherichia coli,and the antibacterial ability ranged in the order of HLTN=MZ.【Conclusion】The antioxidant and bacteriostatic capacity of HL was the strongest,and the results laid an experimental basis for

10、 extraction and utilization of pomegranate peel extract.Key words:pomegranate peel,extraction optimization,1H-NMR,antioxidants,antibacterials石榴皮约占石榴果实的40%,通常作为加工副产物而废弃,石榴皮含有多种生物活性物质,其中酚类化合物是石榴皮中的主要活性物质1。研究表明,从石榴皮中获得的提取物具有良好的抗菌、抗病毒、抗氧化、抗炎和抗肿瘤的生物活性2-3。Haghighian等4的临床试验表明:短期服用石榴皮提取物(PPE)对患有膝盖骨关节炎的肥胖妇女的

11、总胆固醇和甘油三酯的血清水平和抗氧化状态有显著的改善效果。Gull等5将PPE添加到纳米壳聚糖涂层中,可显著延缓杏的重量损失和腐烂。PPE可作为抗氧化剂、抗菌剂或功能性食品成分的潜在来源6,因此对石榴皮进行资源再利用具有较好的环境与经济价值。PPE的提取方法主要有:超声波辅助提取(空化现象和改善传质)、高压辅助提取(破坏植物组织和增强传质效应)、高压放电辅助提取(电击穿现象破坏细胞结构)、超临界流体提取(溶剂具有低粘度和高扩散系数)、微波辅助提取(微波辐射和较高温度的破坏作用)、酶辅助提取(酶水解细胞壁)和溶剂浸提。溶剂浸提具有操作简单方便、提取成本低、无需大型仪器参与等优点,是实现PPE批量

12、生产的最佳方法之一。本研究采用溶剂浸提法,通过响应面法优化提取(提取时间、乙醇浓度、温度、料液比),得到最佳提取条件,为简便、大批量、低成本获取PPE研究应用提供参考。并评估3种常见PPE(HL、MZ、TN)的组成成分、抗氧化性能(DPPH自由基清除能力、羟自由基清除能力、超氧阴离子清除能力、铁还原能力)和抗菌性能(荧光假单胞菌、大肠杆菌、金黄色葡萄球菌),为PPE的功能研究以及特殊产品开发提供理论依据与参考。1材料与方法1.1试剂与仪器3种新鲜石榴,杨凌润美农业发展有限公司;抑制与产生超氧阴离子自由基测定试剂盒(比色法),南京建成生物工程研究所;福林酚试剂,北京索莱宝科技有限公司;其它化学试

13、剂均为分析纯。Varioskan Flash荧光酶标仪,美国赛默飞世尔科技公司。1.2石榴皮粉制备手工剥离石榴皮,40 烘箱干燥60 h,粉碎,过40目筛,4 储藏备用。1.3绘制没食子酸标准曲线采用福林酚法7。配制没食子酸标准溶液,将100 L 各浓度标准溶液、6 mL 双蒸水和 500 L Folin-Ciocalteau 试剂混合均匀。静置 8 min,加入1.5 mL Na2CO3溶液(20%w/v),充分混合,静置30 min,765 nm处测量吸光度。以吸光度为Y轴,没食子酸浓度为x轴,绘制标准曲线。得回归方程:Y=0.771 5x+0.051 9,R2=0.999 61.4多酚提

14、取与测定取3.0 g石榴皮粉,按照一定的提取时间、温度、料液比、乙醇浓度进行浸提。提取后离心取上清液,稀释,按1.3所诉方法测定吸光度。以下列公式计算总酚含量(TPC):Y=XcV/m式中:Y:总酚含量(mg/g);c:所测样品总酚浓度(mg/mL);X:稀释倍数;V:提取液体积(mL);m:样品质量(g)。1.5单因素试验按1.3、1.4所述方法,固定其它条件不变,研究第 3 期张茂栖等:响应面优化石榴皮多酚提取物提取工艺及其活性研究follows:extraction time for 77 min,ethanol concentration of 36.0%,temperature at

15、 66.9 C,solid-liquid ratio of 1 37.Under these conditions,the total content of phenols was(242.0261.94)mgGAE/g.The main components of pomegranate peel extract were sugars such as pectin,organic acids,phenolic compounds,etc.The antioxidant capacity of these extracts ranged as follows:HL TN MZ butylat

16、ed hydroxyanisole.The susceptibility of the three bacteria to pomegranate peel extract ranged in the following order:Pseudomonas fluorescens Staphylococcus aureus Escherichia coli,and the antibacterial ability ranged in the order of HLTN=MZ.【Conclusion】The antioxidant and bacteriostatic capacity of

17、HL was the strongest,and the results laid an experimental basis for extraction and utilization of pomegranate peel extract.Key words:pomegranate peel,extraction optimization,1H-NMR,antioxidants,antibacterials石榴皮约占石榴果实的40%,通常作为加工副产物而废弃,石榴皮含有多种生物活性物质,其中酚类化合物是石榴皮中的主要活性物质1。研究表明,从石榴皮中获得的提取物具有良好的抗菌、抗病毒、抗氧

18、化、抗炎和抗肿瘤的生物活性2-3。Haghighian等4的临床试验表明:短期服用石榴皮提取物(PPE)对患有膝盖骨关节炎的肥胖妇女的总胆固醇和甘油三酯的血清水平和抗氧化状态有显著的改善效果。Gull等5将PPE添加到纳米壳聚糖涂层中,可显著延缓杏的重量损失和腐烂。PPE可作为抗氧化剂、抗菌剂或功能性食品成分的潜在来源6,因此对石榴皮进行资源再利用具有较好的环境与经济价值。PPE的提取方法主要有:超声波辅助提取(空化现象和改善传质)、高压辅助提取(破坏植物组织和增强传质效应)、高压放电辅助提取(电击穿现象破坏细胞结构)、超临界流体提取(溶剂具有低粘度和高扩散系数)、微波辅助提取(微波辐射和较高

19、温度的破坏作用)、酶辅助提取(酶水解细胞壁)和溶剂浸提。溶剂浸提具有操作简单方便、提取成本低、无需大型仪器参与等优点,是实现PPE批量生产的最佳方法之一。本研究采用溶剂浸提法,通过响应面法优化提取(提取时间、乙醇浓度、温度、料液比),得到最佳提取条件,为简便、大批量、低成本获取PPE研究应用提供参考。并评估3种常见PPE(HL、MZ、TN)的组成成分、抗氧化性能(DPPH自由基清除能力、羟自由基清除能力、超氧阴离子清除能力、铁还原能力)和抗菌性能(荧光假单胞菌、大肠杆菌、金黄色葡萄球菌),为PPE的功能研究以及特殊产品开发提供理论依据与参考。1材料与方法1.1试剂与仪器3种新鲜石榴,杨凌润美农

20、业发展有限公司;抑制与产生超氧阴离子自由基测定试剂盒(比色法),南京建成生物工程研究所;福林酚试剂,北京索莱宝科技有限公司;其它化学试剂均为分析纯。Varioskan Flash荧光酶标仪,美国赛默飞世尔科技公司。1.2石榴皮粉制备手工剥离石榴皮,40 烘箱干燥60 h,粉碎,过40目筛,4 储藏备用。1.3绘制没食子酸标准曲线采用福林酚法7。配制没食子酸标准溶液,将100 L 各浓度标准溶液、6 mL 双蒸水和 500 L Folin-Ciocalteau 试剂混合均匀。静置 8 min,加入1.5 mL Na2CO3溶液(20%w/v),充分混合,静置30 min,765 nm处测量吸光度

21、。以吸光度为Y轴,没食子酸浓度为x轴,绘制标准曲线。得回归方程:Y=0.771 5x+0.051 9,R2=0.999 61.4多酚提取与测定取3.0 g石榴皮粉,按照一定的提取时间、温度、料液比、乙醇浓度进行浸提。提取后离心取上清液,稀释,按1.3所诉方法测定吸光度。以下列公式计算总酚含量(TPC):Y=XcV/m式中:Y:总酚含量(mg/g);c:所测样品总酚浓度(mg/mL);X:稀释倍数;V:提取液体积(mL);m:样品质量(g)。1.5单因素试验按1.3、1.4所述方法,固定其它条件不变,研究229甘肃农业大学学报2023 年时间(10、30、50、70、90、110 min)、乙醇

22、浓度(0、15、30、45、60、70%)、温度(30、40、50、60、70、80)、料液比(1 10、1 20、1 30、1 40、1 50、1 60)对TPC的影响,确定最佳提取条件。1.6响应面试验设计根据单因素试验,利用Box-Behnken模型,以时间(X1)、乙醇浓度(X2)、温度(X3)、料液比(X4)为优化因素。TPC(Y)作为响应值。试验因素和水平见表1。二阶多项式模型如下:Y=M0+i=14MiXi+i=14MiiX2i+i3j=i+14MijXiXjM0、Mi、Mii、Mij为回归系数;Xi和Xj为变量。1.7不同品种PPE制备按1.2和1.4所述的方法制备HL、TN、

23、MZ的提取液。经旋转蒸发、冷冻干燥得提取物固体,-22 储存备用。1.8PPE组成成分分析采用1H-NMR光谱分析3种PPE组成成分,1H-NMR 试 验 采 用 Z116098_0762 探 头,扫 描 频 率400.13 MHz,测定温度297.8 K,谱宽8 196.7 Hz,扫描次数16次,溶剂为D2O。1.9抗氧化活性测定测定3种PPE的各项抗氧化能力,并以丁基羟基茴香醚(BHA)作为对照。1.9.1DPPH自由基清除能力参考Ivanovic等8的方法,将提取物水溶液(100 L)与甲醇(1 mL)和0.2 mmol/L DPPH溶液(1 mL)混匀。室温下,黑暗中孵育30 min,

24、517 nm处测定吸光度。以下列公式计算清除率:清除率=A0-A1A0100%式中:A0:空白吸光度;A1:样品吸光度。1.9.2羟自由基清除能力测定参考王巨存等9的方法,0.5 mL蒸馏水代替样品作空白,1.5 mL蒸馏水代替EDTA-Fe2+和样品作对照。以下列公式计算清除率:清除率=(A0-A1)-(A0-A2)A1-A0100%式中:A0:空白组吸光度;A1:对照组吸光度;A2:样品组吸光度。1.9.3超氧阴离子清除能力采用抑制与产生超氧阴离子自由基测定试剂盒(比色法)测定。1.9.4铁还原能力的确定参考Szabo等10的方法。将1 mL样品、1 mL磷酸盐缓冲液(pH:6.6)和1

25、mL铁氰化钾(1%w/v)混合,50 C下孵育20 min。然后,在混合物中加入1 mL三氯乙酸(10%w/v),混合均匀,3 000 r/min下离心10 min。最后取1 mL上清液与200 L氯化铁(0.1%w/v)和1 mL蒸馏水混合,室温下孵育10 min,700 nm处测定吸光度。吸光度越高还原能力越强。1.10抑菌试验参考Zhang等11的方法。石榴皮提取物的抗菌活性以抑菌圈直径(mm)来表示。1.11数据统计分析所 有 试 验 一 式 三 份,软 件 Design-Expert.V8.0.6.1 用于响应面试验设计及方差分析,Origin 2021b用于图表处理及显著性分析。2

26、结果与分析2.1单因素试验2.1.1提取时间对 TPC 的影响由图 1 可知,TPC随时间的增加,呈现先增后减的趋势。因为石表1响应面试验因素水平Table 1Response surface test factor level因素Factor时间/min Time乙醇浓度/%Ethanol concentration温度/Temperature料液比(g mL)Solid-liquid ratio编码CodeX1X2X3X4水平 Level-15015501:3007030601:40+19045701:50230第 3 期张茂栖等:响应面优化石榴皮多酚提取物提取工艺及其活性研究榴皮粉暴露在

27、介质中的时间越长,转移到介质中的多酚量越多。在70 min时,达到介质萃取极限或粉与介质达到动态平衡,TPC取得最大值。继续延长提取时间,多酚长时间暴露,与空气中氧气接触导致氧化降解,TPC呈缓慢下降趋势12。而且较长的提取时间会导致更多的多糖等杂质析出。Aleksandra等13在试验中发现了相似的结果,利用乙醇溶液浸提百里香中的多酚类物质,发现多酚提取量与时间呈一定正相关性,达到最高值后呈缓慢下降趋势,但无统计学意义上的显著性差异,多酚化合物在水相中长时间暴露会发生酶促降解和氧化以及与不溶性化合物聚合,从而降低产率。因此选择提取时间为70 min。2.1.2乙醇浓度对 TPC 的影响由图

28、2 可知,TPC随乙醇浓度的增加,呈先增后减的趋势,在乙醇浓度为30%时,TPC取得最大值。乙醇浓度不断降低,乙醇溶液极性会不断增加,根据相似相溶原理,能提取更多极性酚类化合物14;而且在极性更大的介质中,氢键更容易断裂,萃取酚类化合物也更容易15;乙醇溶液中的水会增强植物材料溶胀,增加固体材料与溶剂之间的接触面积,并且乙醇可破坏溶质与植物基质之间的键合,从而使化合物更好地进行转移。因此,水和乙醇之间具有协同作用16。Delphine等17在对菊苣渣中多酚的提取工艺优化研究中得出了相似的结论,当乙醇含量从0%增加到 50%60%时,观察到提取率不断增加;当乙醇含量超过60%时,提取率迅速下降。

29、因此选择乙醇浓度为30%。2.1.3温度对TPC的影响由图3可知,TPC随提取温度的增加,呈先增加后趋于稳定有逐渐减小的趋势,在提取温度为60 时,TPC取得最大值。温度升高可加快多酚分子的布朗运动,缩短多酚进入溶剂的时间,降低溶剂表面张力和粘度、提高溶剂渗透率和对多酚的溶解度,使植物基质和细胞结构更易降解,提高细胞渗透性,减弱酚类化合物与蛋白质或多糖之间的相互作用,从而提高TPC15。然而随着温度继续升高,会加速多酚的降解,减少得率;溶解出更多杂质(如多糖),影响产品纯度。导致石榴细胞壁中纤维过多的溶胀,阻碍分子从细胞基质向溶剂的渗透18。在高温下并未观察到TPC显著降低,这是由于石榴皮多酚

30、在高温下较为稳定,不易分解。Zivkovi等15具有相似的研究结论,其利用超声辅助提取法提取石榴皮多酚,研究发现TPC随着温度的升高而急剧增加,并且石榴皮中的酚类物质在高温条件下是稳定的。综合能耗考虑,选择提取温度为60。2.1.4料液比对 TPC 的影响由图4可知,TPC随料液比的减小,呈先增加后减小的趋势,在料液比为1 40时,TPC取得最大值。料液比越小,植物细胞内外浓度差就越大,扩散速率越大19。然而,料液比过小,则会延长分子的扩散距离,增加提取与纯化成本。这与Nada等20的研究结果相似,使用浸渍法图1提取时间对TPC的影响Figure 1The effect of extracti

31、on time on TPC图2乙醇浓度对TPC的影响Figure 2The effect of ethanol concentration on TPC图3温度对TPC的影响Figure 3The effect of temperature on TPC231甘肃农业大学学报2023 年提取苦莓干多酚,其提取率从1 10到1 20时显着增加,随后在1 30时略有下降。2.2响应表面分析试验条件和结果见表2,方差分析见表3。根据表3的方差分析,模型具有显著性(P0.05),表明该模型具有统计学意义,拟合性较好21;R2为0.956 4,二阶多项式能较好地预测实际结果,变异系数C.V.为0.66

32、%,表明模型重现性较好。此外,X1、X2、X3、X1X4、X3X4、X12、X22、X32和X42对PPE的TPC影响显著,影响TPC的因素依次是乙醇浓度提取时间温度料液比。在图5中,二维响应面图和三维响应面图呈现了两个因素之间的相互作用,椭圆形的离心率越小,表示两个因素之间的相互作用越低22,相互作用大小依次为:表2响应面试验设计及结果Table 2Response surface design arrangement and experimental result编号Codes1234567891011121314151617181920212223242526272829时间(X1)/m

33、inTime7050507070907090907050507070707090707070707050909070707050乙醇浓度(X2)/%Ethanol concentration3030304530454515301530451530304530303030151515303030304530温度(X3)/Temperature7070506050607060507060606070605070506060506060606060606060料液比(X4)/(g mL)Solid-liquid ratio504040503040404040403040303040404050404

34、0405040503040403050总酚含量/(mgGAE g-1)Total phenolic content228.329227.565224.304230.182220.648233.190231.653222.046229.355228.135226.956227.878220.535234.022235.985228.260234.551229.544233.545234.836221.099223.127219.948230.442228.858234.302236.093231.932220.491图4料液比对TPC的影响Figure 4The effect of solid-

35、liquid ratio on TPC232第 3 期张茂栖等:响应面优化石榴皮多酚提取物提取工艺及其活性研究X3X4 X1X4X2X4 X2X3 X1X2 X1X3。TPC 的二阶多项式模型可表示为:Y=234.95+2.61X1+4.02X2+2.59X3-0.07X4+0.80X1X2+0.48X1X3+2.01X1X4-0.91X2X3-1.09X2X4-3.65X3X4-3.99X12-4.94X22-2.50X32-4.05X42通过模型得到最佳工艺条件为:时间76.73 min、乙醇浓度 36.04%、温度 66.85 C、料液比 1 37.13,TPC预测值为237.096 m

36、gGAE/g。根据实际情况将条件调整为时间 77 min、乙醇浓度 36.0%、温度66.9、料液比 1 37。在此条件下,实际 TPC 为(242.0261.94)mgGAE/g,预测值与实际值较为符合。Zivkovi等15通过超声辅助提取,得到的TPC为(149.127.46)mgGAE/g,而 Ankita23的研究则发现TPC高达510 mgGAE/g。Nejib等24针对不同品种 的 石 榴 进 行 提 取,结 果 表 明 TPC 为 205-276 mgGAE/g,品种的差异会显着影响 PPE 的TPC。同时提取方法、种植的地理环境和成熟度也会影响TPC25。2.3PPE成分分析P

37、PE的1H-NMR核磁图谱如图6所示,根据化学位移情况,将化学位移区间分为三部分,第一部分为0.53.0 ppm(高场区),是脂肪族氨基酸和有机酸的信号区间;第二部分为3.05.5 ppm(中场区),是果糖、多糖等糖类的信号归属区间;第三部分为6.09.0 ppm(低场区),是氨基酸和酚类化合物的信号区间26。3种PPE在3种场区的积分分布情况如表4所示。由图6可知,3种PPE的核磁图谱相似度较高。图谱的主要差异体现在峰高上,其原因是3种PPE的化学成分的相对含量不一致。其中在位移区间0.53.0 ppm和6.09.0 ppm的峰高差异最为明显,表明3种PPE的有机酸和酚类化合物的相对含量存在

38、差异。3种PPE在高场区的图谱如图7所示,它们均在表3方差分析Table 3ANOVA for the fitted quadratic polynomial model差异来源Source模型ModelX1-时间TimeX2-乙醇浓度Ethanol concentrationX3-温度TemperatureX4-料液比Solid-liquid ratioX1X2X1X3X1X3X2X3X2X4X3X4X12X22X32X42残差 Residual失拟项 Lack of fit误差 Pure error合计 Cor total平方和Sum of squares709.0881.64193.64

39、80.320.0582.580.9416.23.324.7153.21103.19158.1940.66106.5732.3227.544.79741.4自由度Degree of freedom14111111111111111410428均方Mean square50.6581.64193.6480.320.0582.580.9416.23.324.7153.21103.19158.1940.66106.572.312.751.2F值F value21.9435.3683.8634.790.0251.120.417.011.442.0423.0444.6968.5117.6146.162.3

40、P值P value0.000 10.000 10.000 10.000 10.876 40.3080.534 70.019 10.250 40.175 10.000 30.000 10.000 10.000 90.000 10.218 9显著性Significance*NA*表示极显著P0.01,*表示显著P0.05,NA表示不显著。*means very significant P0.01,*means significant P0.05,NA means not significant.233甘肃农业大学学报2023 年1.02.4 ppm区间有5个相同的信号峰区域,但是各峰的积分面积不相

41、同,相对峰面积分别为7.71、5.37、1.27,该部分化学组成基本相同,相对含量有较大差异。研究表明:2.400.50 ppm区间主要是甾体皂苷的信号峰27。2.53.0 ppm 区间主要是 EGCE、ECG的信号峰28,HL和MZ在此区间的峰区域种类较TN略少,但是相对积分面积较高(分别为3.91、2.61、5.26)。3种PPE在低场区的图谱如图8所示,3种PPE的图谱大致相同,其中TN的化合物有效峰个数显著大于HL和MZ(分别为40、24、25),相对积分面积分别为 8.69、3.72、2.91。其中 8.307.00 ppm 区域主要是3-苯基色原酮衍生物在苯环上氢或酚羟基氢的信号峰

42、27。TN、HL、MZ在该区域的有效化合物峰个数为8、3、4,相对积分面积分别为1.79、1.61、0.61。通过比较高场区、低场区、全谱的核磁图谱和位移区间积分分布情况表可以推断出PPE的主要成分物质为糖类,因为石榴皮多酚提取过程中,会存在较多的石榴皮果胶析出,果胶主要存在于植物细胞壁中,约占水果细胞壁的 40%(以干物质计)29。Ganesh等30以水为溶剂在较高温度下(62),从石榴皮中提取得到大量果胶。TN有机酸和酚类化合物的种类最多。HL与MZ有机酸和酚类化合物种类数量差距不大。TN和HL有机酸和酚类化合物相对含量高于MZ,其中TN的含量略高于HL。HL和MZ均为硬籽石榴,TN为软籽

43、石榴,其活性物质种类的图5二维响应面图和三维响应面图Figure 52D Response surface plot and 3D response surface plot234第 3 期张茂栖等:响应面优化石榴皮多酚提取物提取工艺及其活性研究数量或许与硬软籽有关,但还需进一步的验证。同时品种是影响有机酸和酚类化合物含量的重要因素。Francesca等31研究了7种石榴皮的有机酸和酚类化合物的种类和含量,发现果皮富含有机酸和酚类化合物,并且品种类型和种子硬度显著影响果皮活性物质质量。2.4PPE抗氧化活性由图9可知,3种PPE对DPPH自由基清除能力均优于BHA,其中MZ的清除能力显著低于H

44、L和TN,HZ与TN在较低浓度时(TNMZ。在图11中,BHA超氧阴 离 子 基 清 除 能 力 是 最 弱 的;在 浓 度 较 低 时(MZTN。图12显示,铁还原能力最差的是MZ;HL和TN没有显著性差异,BHA 比他们略低。所有结果都表明,抗氧化剂活性与PPE浓度呈正相关,Zahra等也得出了相同的结论32,而且提取物中抗氧化剂的结构和相互作用也会影响总体的抗氧化能力33。抗氧化试验表明,HL具有最好的抗氧化性能,MZ最差,3种PPE综合抗氧化能力优于BHA。2.5PPE抗菌活性由图13可知,3种PPE对大肠杆菌、金黄色葡萄球菌、荧光假单胞菌生长均有较好的抑制作用。3种PPE对大肠杆菌和

45、金黄色葡萄球菌的抑制作用没有显著差异;HL对荧光假单胞菌具有最好的抑制作用。抑菌试验还表明:荧光假单胞菌对PPE最敏感,大肠杆菌对PPE最耐受,这与Zelika等34的发现一致,其结果表明:通过乙醇水溶液提取的PPE 对大肠杆菌、金黄色葡萄球菌有良好的抑制作用,且对金黄图6PPE 1H-NMR核磁图谱Figure 6PPE 1H-NMR nuclear magnetic spectrum图7PPE高场区图谱Figure 7PPE high field map图8PPE低场区图谱Figure 8PPE low field map235甘肃农业大学学报2023 年色葡萄球菌的抑制作用优于大肠杆菌。

46、然而,Erin等35声称:通过取水提取的PPE对金黄色葡萄球菌有抑制作用,但对大肠杆菌没有抑制作用。Al-zoreky的研究表明:水提取的PPE几乎没有抗菌能力,甲醇提取的PPE具有广泛的抗菌能力36。此外,通过甲醇水溶液提取的含有13%鞣花酸标准化的PPE对金黄色葡萄球菌等革兰阳性细菌有抑制作用,但对大肠杆菌和其他革兰氏阴性细菌没有抑制作用37。因此,提取溶剂对PPE的抗菌活性具有很大的影响,PPE中的每一种活性物质对每种微生物都有不同的抑制作用,PPE的纯化可能会影响其广谱抗菌性。3结论本研究得到的 PPE 最佳提取条件为:时间77 min、乙醇浓度36.0%、温度66.9、料液比1 37

47、。在此条件下,TPC 为(242.0261.94)mgGAE/g,与理论值相近,表明模型具有较好的拟合性,具有实际价值。PPE成分分析表明,其主要成分为果胶等糖类、有机酸、酚类化合物和少量的氨基酸,品种是影响PPE的成分种类及相对含量的重要因素。其中有机酸和酚类化合物种类和相对含量最多的是TN。抗氧化试验结果表明PPE具有较好的抗氧化能力,其中能力最强的是HL。抑菌试验表明PPE对大肠杆菌、荧光假单胞菌、金黄色葡萄球菌均具有一定的抑制作用,其对PPE的敏感度依次为荧光假单胞菌金黄色葡萄球菌大肠杆菌,其中HL的抑菌效果图9PPE对DPPH自由基的清除能力Figure 9DPPH free rad

48、ical scavenging ability of PPE图10PPE羟自由基基清除能力Figure 10Hydroxyl radical scavenging ability of PPE图11PPE超氧阴离子清除能力Figure 11Uperoxide anion scavenging capacity of PPE图12PPE铁还原能力Figure 12Iron reduction ability of PPE图13PPE抑菌能力Figure 13Antibacterial ability of PPE236第 3 期张茂栖等:响应面优化石榴皮多酚提取物提取工艺及其活性研究最好。PPE

49、有望成为天然抗氧化剂和食品防腐剂的重要来源。参考文献1 Singh B,Singh J P,Kaur A,et al.Phenolic compounds as beneficial phytochemicals in pomegranate(Punica granatum L.)peel:A reviewJ.Food Chemistry,2018,261:75-86.2 张茂栖,罗薇,蔡丽莎,等.水果副产物抗氧化活性及其在猪肉保鲜中的应用 J.江苏农业学报,2021,37(3):800-807.3 Malviya S,Arvind,Jha A,et al.Antioxidant and an

50、tibacterial potential of pomegranate peel extractsJ.Journal of Food Science and Technology-Mysore,2014,51(12):4132-4137.4 Haghighian M K,Maryam R,Salar H,et al.Effects of pomegranate(Punica granatum L.)peel extract supplementation on serum lipid profile and oxidative stress in obese women with knee

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服