1、第三课时 两圆的公切线(三)教学目标:(1)理解两圆公切线在解决有关两圆相切的问题中的作用, 辅助线规律,并会应用;(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力教学重点:会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中教学难点:综合知识的灵活应用和综合能力培养教学活动设计(一)复习基础知识(1)两圆的公切线概念(2)切线的性质,弦切角等有关概念(二)公切线在解题中的应用例1、如图,O1和O2外切于点A,BC是O1和O2的公切线,B,C为切点若连结AB、AC会构成一个怎样的三角形呢?观察、度量实验(组织学生进行)猜想:(学生猜想)BAC=90证明:过点
2、A作O1和O2的内切线交BC于点OOA、OB是O1的切线,OA=OB同理OA=OC OA=OB=OCBAC=90反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法例2、己知:如图,O1和O2内切于P,大圆的弦AB交小圆于C,D求证:APCBPD分析:从条件来想,两圆内切,可能作出的辅助线是作连心线O1O2,或作外公切线证明:过P点作两圆的公切线MNMPC=PDC,MPN=B,MPCMPN=PDCB,即APCBPD反思:(1)作了两圆公切线MN后,弦切角就把两个圆中的圆周角联系起来了要重视MN的“桥梁”作用(2)此例证角相等的方法是利
3、用已知角的关系计算拓展:(组织学生研究,培养学生深入研究问题的意识)己知:如图,O1和O2内切于P,大圆O1的弦AB与小圆O2相切于C点是否有:APCBPC即PC平分APB答案:有APCBPC即PC平分APB如图作辅助线,证明方法步骤参看典型例题中例4(三)练习练习1、教材145练习第2题练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点求证:PAPB=PDPC证明:过点P作两圆的公切线EF AB是小圆的切线,C为切点FPC=BCP,FPB=A又1=BCP-A 2=FPC-FPB1=2 A=D,PACPDBPAPB=PDPC说明:此题在例2题的拓展的基础上解得非常容易(
4、三)总结学习了两圆的公切线,应该掌握以下几个方面1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形3、常用的辅助线:(1)两圆在各种情况下常考虑添连心线;(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线4、自己要有深入研究问题的意识,不断反思,不断归纳总结(四)作业教材P151习题中15,B组2探究活动问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D(1)用量角器量出EAF与CBD的大小,根据量得结果,请你猜想EAF与CBD的大小之间存在怎样的关系,并证明你所得到的结论(2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由(3)如果将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明提示:(1)(2)(3)都有EAF+CBD=180证明略(如图作辅助线)说明:问题从操作测量得到的实验数据入手,进行数据分析,归傻贸霾孪耄鞑孪氤闪庖彩?a href= target=_blank数学发现的一种方法第(2)、(3)题是对第(1)题结论的推广和特殊化第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为CAD90数学教案两圆的公切线