1、第1课时 5.1.1相交线【学习目标】1了解对顶角与邻补角的概念,能辨认对顶角与邻补角;掌握“对顶角相等”的性质;2探究对顶角、邻补角的位置关系及概念;【活动方案】活动一认识邻补角,对顶角阅读课本P2-3回答下列问题并在组内讨论交流1什么是邻补角?什么是对顶角?2两条直线相交,共有几个小于平角的角?每个角的邻补角有几个?相邻两边位置关系如何? 3对顶角是否成对出现,如何寻找对顶角? 4完成下表,并在小组进行交流:两条直线相交 所形成的角 分 类 位置关系 数量关系如果改变1的大小,会改变它与其他角的位置关系和数量关系吗? OCA活动二掌握“对顶角相等”的性质阅读课本P3例题,完成下面问题,并进
2、行小组交流:1如图,已知AOC , (1)在图中画出AOC的补角AOB,DOC;(2)此时图中的角(不包括平角)两两相配共能组成_ _对对顶角,根据每对角存在的位置关系可将它们分成_ _类(3)图中相等的角有_ _ _2若1与2是对顶角,则_ _,依据是_ _3若1与2是对顶角,且1+2=130,则2=_ _4若1与2是对顶角,3与2互补,3=60,那么1=_5如图,已知直线l1与l2相交于点O,且1=50,求2,3,4的度数?1234l1l2第5题课堂小结:通过这节课的学习你有什么收获?【检测反馈】1如图,AOC的对顶角是_ _;_ _是DOE的对顶角;如果BOE=30,则AOF =_ _,
3、根据是_ _2如图, 1+5=180,则图中与1相等的角有_ _个,与1互补的角有_ _个.3如图,直线a、b、c两两相交,1=33,2=75,则4=_.4如图,AOC和COB互为邻补角,OD.OE分别是AOC和COB的平分线,则12345678第2题ABDOECF第1题DOE=_.D1342abc第3题ABECO第4题CEAFDBO12335如图直线AB.CD.EF相交于O,1=15,BOD=90,求2的度数。第2课时 垂线(1) 【学习目标】1经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,培养学生用几何语言表达的能力;毛2了解垂直的概念,掌握垂线的“过一点有且只有一条直线
4、与已知直线垂线”的性质,会用三角尺或量角器过一点画一条直线的垂线【活动方案】活动一 实践探究垂直的概念阅读课本P3-4页,回答下列问题:1观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线,思考这些给大家什么印象?2思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?结论:当b的位置变化时,角a从锐角变为钝角,其中a是_角时是特殊情况;其特殊之处还在于:当a是_角时,它的邻补角,对顶角都是_角,即a、b所成的四个角都是_角,都_.3.垂直定义:两条直线相交,所成四个角中有一个角是_角
5、时,我们称这两条直线_,其中一条直线是另一条的_,他们的交点叫做_。4表示方法:垂直用符号“”来表示,如图,“直线AB垂直于直线CD, 垂足为O”,则记为_,在图中任意一个角处作上直角记号.5.垂直应用:(1)AOD=90( ) ABCD ( ) ABCD ( ) AOD=90 ( )(2)判断以下两条直线是否垂直: 两条直线相交所成的四个角中有一个是直角;两条直线相交所成的四个角相等; 两条直线相交,有一组邻补角相等; 两条直线相交,对顶角互补.小组交流上面的答案,并谈谈自己的收获和体会活动二、画图实践,探究垂线的性质1.探究:(1).用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条
6、?(2).经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3).经过直线l外一点B画l的垂线,这样的垂线能画出几条? 2.思考:经过一点(已知直线上或直线外),能画出已知直线的几条垂线?小组交流并归纳:垂线的性质 。 3自学书上例题,完成变式训练:如图,根据下列语句画图:(1)过点P画射线AM的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点. 小结:本堂课你有哪些收获【检测反馈】(一)、判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的
7、四个角中,如果有三个角相等,那么这两条直线互为垂直.( )(二)、填空题.1.如图1,OAOB,ODOC,O为垂足,若AOC=35,则BOD=_.2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.3.如图3,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_.(三)、解答题.1.已知:如图,直线AB,垂线OC交于点O,OD平分BOC,OE平分AOC.试判断OD 与OE的位置关系.3. 如下图,P是AOB的OB边上的一点,请分别过P点画 OA、OB的垂线 B P . O A第3课时 垂线(2)【学习目标】1.经历观察、
8、操作、归纳、概括、交流等活动,发展空间观念,提高几何语言表达能力;毛2.学习垂线段的概念、性质,体会点到直线的距离的意义, 并会度量点到直线的距离.【活动方案】活动一1.阅读课P5“思考” ,根据下列问题思考,并进行小组讨论。 (1)回忆上学期最短的知识。 (2)若把渠道看成是线段,它的一个端点是P,那么另一个端点的位置呢?如何能作出一条线段使P到河流的距离最短。 (3)小组交流,得出结论: 简单说成: .2.思考并小组讨论:(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系. 活动二 1. ,叫做点到直线的距离. 2.初步应用.练习1:如图,直线a.b,过直线a上一点A作ABa,交
9、b于点B,过B作BCb交a 于点C.你能说出哪些点到直线的距离?试着和小组交流.练习2:课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000, 水渠大约要挖多长?练习3:判断正确与错误,如果正确,请说明理由,若错误,请订正.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE是点A到直线BC的距离.(3)如图,线段CD的长是点C到直线AB的距离. 【检测反馈】一.填空题:1.如图,ACBC,C为垂足,CDAB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_,点A到BC的距离是_,点B到CD
10、的距离是_,A.B两点的距离是_. 2.如图,在线段AB.AC.AD.AE.AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为_. 二.解答题. 1.(1)用三角尺画一个是30的AOB,在边OA上任取一点P,过P作PQOB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?(2)若所画的AOB为60角,重复上述的作图和测量,你能发现什么? 2.如图,分别画出点A.B.C到BC.AC.AB的垂线段,再量出A到BC.点B到AC. 点C到AB的距离.第4课时 同位角、内错角、同旁内角【学习目标】1了解同位角、内错角、同旁内角的概念;2结合图
11、形识别同位角、内错角、同旁内角【活动方案】活动一1.认真预习课本P6-7,对照图形,理解并画出同位角、内错角、同旁内角的概念,圈出概念中的关键词。2.对照概念,找出图中存在的同位角.内错角.同旁内角。3.两条直线被第三条直线所截,形成的八个角中共有( ).A.4对同位角,2对内错角,2对同旁内角 B.2对同位角,4对内错角,2对同旁内角C.2对同位角,2对内错角,4对同旁内角 D.2对同位角,2对内错角,2对同旁内角4. 小组合作交流,探究与两直线的位置关系与截线的位置关系图形特征同位角内错角同旁内角活动二1.下列各图中的1与2是不是同位角?(图1)1213212图12.如图,直线DE.BC被
12、直线AB所截,l与2,1与3,1与4各是什么关系的角?3.如图,直线DE截直线AB,AC,构成8个角。指出所有的同位角.内错角和同旁内角。课堂小结:通过这节课的学习你有什么收获?请与同学分享【检测反馈】1.如图所示,与ACB是同位角的有 ().A1个 B2个C3个D4个2.如图,(1)AED与ACB是 . 被 所截得的 角; (2)EDC和 是DE和BC被 所截得的内错角; (3) 和 是DE和BC被AB所截得的同旁内角; (4) 和 是AB和AC被DE所截得的内错角。3图中,1与2,3与4各是哪一条直线截哪两条直线而成的?它们各是什么角? 第5课时 平行线【学习目标】1.了解平行线的概念.平
13、面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.2.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.【活动方案】活动一:平行线的基本知识阅读课本P12-13,完成课本中的引言和思考后回答下列问题:1.在同一平面内,两条直线的位置关系是_.思考:为什么一定要说“在同一平面内”? 2.直线a与b互相平行,记做_3.下面说法,正确的是 (). A.在同一平面内,不相交的两条射线是平行线 B.在同一平面内,不相交的两条线段是平行线 C.在同一平面内,两条不同直线位置关系不相交就平行 D.不相交的两条直线是平行线4.请举出生活中平行线的实例。
14、活动二:平行公理及推理读下列语句,并画出图形并回答问题:1.点P是直线AB外一点,直线CD经过点P,且与直线AB平行,这样的直线能画几条?由此可得:平行公理的内容是:_.2. 如图 ,梯形ABCD中,ADBC,P是AB中点,过点P作AD的平行线交DC于点Q;PQ与BC平行吗?测量DQ与CQ是否相等?abc如果两条直线都与第三条直线平行,那么_ _; 即如果a b, bc,那么_.几何语言: ab, ac (已知)bc (平行于同一条的直线的两条直线互相平行)思考:对直线a,b若ab,c与a相交,那么c与b是什么关系?并说明理由小结:谈谈你这节课的收获?【检测反馈】: 1. 在同一平面内,下列说
15、法过两点有且只有一条直线两条不相同的直线有且只有一个公共点过一点有且只有一条直线与已知直线垂直过一点有且只有一条直线与已知直线垂直其中正确的有( )A 1个 B 2个 C 3个 D 4个2. 下列各题是否正确,如果有错误应怎样改正 (1)不相交的两条直线叫做平行线; (2)过相交直线AB.CD外一点E,作直线EF平行于AB且平行于CD; (3)直线ab,过直线a外的一点P,作PQa,那么PQb.3.完成下列推理,并在括号内注明理由。(1)如图1所示,因为AB / DE,BC / DE(已知)。所以A,B,C三点_( )(2)如图2所示,因为AB / CD,CD / EF(已知),所以_ / _
16、( ) 2. 直线AB,CD是相交直线,点P是直线AB,CD外的一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.第6课时 平行线的判定(1)【学习目标】:1.掌握直线平行的条件一.二,并会进行简单的应用2.领悟归纳和转化的数学思想方法【活动方案】:活动1:自主探索阅读课本1314页的内容,完成下列问题。1.判定方法1: 简单说成: 结合右图,你能用几何的符号语言描述这个方法吗?_a_b_l_8_7_6_5_4_3_2_1 2 =_(已知) _ ( )或者 1 =_(已知) _ ( )2.判定方法2: 简单说成: 结合上图,你能用几何的符号语言描述这个方法吗? 3 =_(已知)
17、_ ( )或者 4 =_(已知) _ ( )3.你能用方法1证明方法2吗?请写出证明过程.FEABCD12活动2:判定方法的简单应用1.如图,回答下列问题,并说明理由. (1) 由D=1,可判定哪两条直线平行? (2) 由2=3,可判定哪两条直线平行?2.已知3=45 ,1与2互余,试证明出ABCD ? 123ABCD小结:让学生谈谈还存在哪些疑惑?【检测反馈】 1.如图,下列条件中,能判断ABCD的是( )毛A.BAD=BCD B.1=2 C.3=4 D.BAC=ACD 2.如图,能判断ABCE的条件是 ( ) A.A=ACE B.A=ECD C.B=BCA D.B=ACE3. 如图, 1=
18、2,AC平分DAB,试问图中哪两条直线平行?请说明理由.第7课时 平行线的判定(2)【学习目标】:1.掌握判定两条直线平行的方法,并会用之进行简单的推理;2.学会将未知问题转化已知的(或已解决)问题的数学思想方法.【活动方案】:活动1:探索平行线的判定方法三阅读课本1516页的内容,完成下列各题1.判定方法3:两条直线被第三条直线所截,如果_ ,那么这两直线平行简单说成:_.数学表达式:(如图)_(已知) ()2.用判定方法1或判定方法2怎样证明判定方法3?3.小组讨论归纳:(1)第2题的解决体现了什么数学思想方法?(2)我们已经学了哪几种判定两直线平行的方法?活动2判定方法的简单应用1 如图
19、4,一个弯形管道ABCD的拐角,当_时,有理由是:_ 2 如图5,E是AB上一点,F是CD上一点,G是BC延长线上一点(已知),_();(已知),_();(已知),_()3.如图:为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得,你能通过度量图中已标出的其他的角度来验证这个结论吗?说出你的理由。 小组合作.展示下列内容:先独立思考可以通过测量图中标出的哪个角的度数来验证这个结论,并说明你的理由;然后小组交流,共有几种方法解答本题? 小结判定两直线平行的方法有哪些? 小结:这堂课你有哪些收获?【检测反馈】1. 如图6,当A = 度时,ABCD 图6A2如图7,直线EF分别交直线AB、
20、CD于点E、F,147,则2_ 时,ABCD3如图9,ACBC,BAC65,当BCD_度时,ABCD 4下列图形中,由,能得到的是( )5如图10,AE交AB、CD于A、F,且,试说明第8课时 平行线的性质【学习目标】1.使学生掌握平行线的性质,了解平行线的性质和判定的区别,并且会运用它们进行简单推理和计算2.使学生领会数形结合.转化.对比的数学思想和方法,从而提高学生分析问题和解决问题的能力.【活动方案】活动一:通过活动探索平行线的性质任意画出两条平行线(ab),画一条截线c与这两条平行线相交,标出8个角(如图)。1.指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同
21、位角15角的度数数量关系学生活动:画图度量填表猜想2 再画出一条截线d,看你的猜想结论是否仍然成立?如果a与b不平行呢?得出结论(平行线的性质1): 3.判断图中的内错角.同旁内角分别有什么关系?平行线的性质2 平行线的性质3 思考:在利用平行线的性质判断角的关系时要注意什么?平行线的性质和判定有什么区别?活动二:平行线的性质的应用1.如图:当ADBC时,DAC_. 2.如图:ABCD , A98,C75,B=_度,D_.3.如图:ABCD,A80,B60,则ACB_度._D_B_A_C4.如图是一块梯形铁片的残余部分,量得A=100,B=115, 梯形另外两个角分别是多少度? 思考与交流:在
22、解决上述实际问题我们主要运用了什么知识?【课堂反馈】1如图,所示,如果DEAB,那么A+ =180,或B+ =180,根据是 ;如果CED=FDE,那么 ,根据是 2.如图,所示,一条公路两次拐弯后和原来的方向相同,即拐弯前.后的两条路平行,若第一次拐角是150,则第二次拐角为 3.(1)如图,A.B.C三点在一条直线上如果3 =6,那么 ( )如果6 =9,那么 ( )如果1 +2 +3 =180,那么 ( )如果 = ,那么BECD( )(2)如图,看图填空: 1 =2(已知) ( )又2 =3(已知) ( )第9课时 命题、定理【学习目标】1.理解命题.公理.真命题.假命题概念2.学会区
23、别命题的题设与结论;会判断一个命题的真假。【教学方案】活动一 认识命题阅读课本P21 的1.2小节回答下列问题:1什么是命题?命题由几个部分组成?2练习:判断下列各语句是不是命题,并简述理由。完成后小组交流。(1)相等的角是对顶角 (2)同角的余角相等(3)平角与周角一定不相等 (4)两条直线平行,内错角相等(5)画一个45的角 3请同学们举一些命题的是实例活动二 区别命题的题设与结论,并会判断真假阅读课本P2122 回答下列问题 .指出下列命题的题设和结论,并改写成“如果那么”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角
24、相等; 请判断以下命题的真假(1)若ab0,则a0,b0(2) 直角是平角的一半(3)如果n是整数,那么2n是偶数(4)如果两个角不是对顶角,那么它们不相等活动三认识公理和定理阅读课本P2122 并在关键词下面做上记号。小结:通过这节课的学习有哪些收获?对本节内容还有哪些疑惑? 【检测反馈】.下列命题中正确的是( )A如果a=b,那么 B相等的角是对顶角C两条不相交的直线叫做平行线 D同位角都相等.下列命题是真命题的是()A.和为180的两个角是邻补角 B.一条直线的垂线有且只有一条;C.点到直线的距离是指这点到直线的垂线段;D.两条直线被第三条直线所截,内错角相等,则同位角必相等。.下列命题
25、中的假命题是 ( )A.平行于同一条直线的两条直线平行 B.垂直于同一条直线的两条直线平行C.过已知直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线垂直于已知直线.指出下列命题的题设和结论,并改写成“如果那么”的形式:(1)三角形的内角和等于180; (2)角平分线上的点到角的两边距离相等(3)邻补角的平分线互相垂直.指出下列命题的题设和结论,并判断它们是真命题还是假命题:(1)两条直线相交只有一个交点.(2)如果一个数的平方是4,那么这个数是2;(3)两个锐角的余角相等;(4)平行线的一组同位角的平分线平行.第10课时 平 移【学习目标】1能发现特殊图案的共同特点,并会根据
26、这个特点绘制图形。2知道图形平移的特征。【活动方案】活动一 发现平移的特征自学课本P2728回答下列问题:(组内交流)1观察课本上的图案,思考: (1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案? 2. 平移的概念。3要确定一个图形平移后的图形,除需要原来的位置外,还需要什么条件?4.平移具有哪些最基本的特征?活动二 会作出已知图形平移后的图形自学课本P29,并完成下列各题:1说说例题中如何作B点的对应点的?并说说这样做的依据?2平移三角形ABC,使点A移动到点A。画出平移后的三角形ABC。 通过这节课的学习有哪些收获?【检测反馈】1 ABC平移到ABC位置,则点A的对应点
27、是 ,线段BC的对应线段是 , C的对应角是 ,2线段AB经过平移得到线段CD,若CD=5 cm,则AB的长为_.2. 线段AB是线段CD平移后得到的图形.点A为点C的 对应点,说出点B的对应点D的位置。3把鱼往左平移8cm.(假设每小格是1cm) 4 如右图,ABC平移后得到了DEF,若A=200,E=740,那么,1=_,2=_,F=_,C=_。二.选择 5如图,在平行四边形ABCD中,AEBC于E,现将ABE进行平移,平移方向为射线AD的方向,平移的距离为线段BC的长,则平移后得到的图形为 ( ) (A) (B) (C) (D)6 对于平移后,对应点所连的线段,下列说法正确的是 ( )对
28、应点所连的线段一定平行,但不一定相等;对应点所连的线段一定相等,但不一定平行,有可能相交;对应点所连的线段平行且相等,也有可能在同一条直线上;有可能所有对应点的连线都在同一条直线上。A B. C. D. 7如图,大矩形的长是10cm,宽是8cm,阴影部分的宽为2cm,则空白部分的面积是 ( )A.36cm2 B.40cm2 C.32cm2 D.48 cm28两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到DEF的位置,AB=10,DH=3,平移距离为4,求阴影部分的面积 第11课时 相交线平行线复习【学习目标】1复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性
29、质进行简单的推理或计算;能用直尺.三角板.量角器画垂线和平行线; 2使学生所学的知识条理化,逐步做到系统化; 3通过例题和练习,使学生进一步理解推理证明,提高学生分析问题.解决问题的能力。【活动方案】活动一 知识点回顾(小组据结构图采用你问我答的方式回顾知识点)命 题平面内两条直线的位置关系 两线四角真命题公理和定理平行公理及推论平行线的性质平行线的判定相交线同旁内角内错角同位角斜线垂线及性质对顶角邻补角假命题三线八角平行线 活动二 1 如图1,直线AB.CD.EF相交于O,AOE的对顶角是 ,邻补角是 ,COF的对顶角是 , 邻补角是 。2如图2,BDE的同位角是 ,内错角是 ,同旁内角是
30、;ADE与DGC是直线 被 所截成的 角。3 如图3,三条直线a.b.c交于一点O,1=45,2=60,3= 。4 如图4,1=105,2=95,3=105,4= 。5 当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线 ,它们的交点叫做 。6 直线外一点到直线上各点连结的所有线段中,垂线段 ,这条垂线段的长度叫做 。7经过直线外一点,有且只有 条直线与这条直线平行;过一点有且只有 条直线与已知直线垂直。8 如果两条直线都和第三条直线平行,那么这两条直线 。 9两条直线被第三条直线所截,如果同位角相等或 相等, 相等, 互补,那么这两条直线平行。10两条平行直线被第三条直线所截,则
31、相等, 相等, 互补。11.已知三角形ABC,(1)过A点画BC边上的垂线;(2)过C点画AB边上的垂线。活动三 例1已知:如图5,ABCD,求证:B+D=BED。 【检测反馈】1如图13,已知OAOC,OBOD,3=26,求1.2的度数。2如图14,已知ABED,CAB=135ACD=80,求CDE的度数。3已知:如图15,ADBC于D,EGBC于G,E =3。求证:AD平分BAC。第五章 相交线、平行线一、填空:(29 + 4 = 22分)1如图,ab直线相交,1=36,则3=_,2=_2如图,直线AB、CD、EF相交于点O,则AOC的对顶角是_,AOD的对顶角是_3在同一平面内,两条直线的位置关系只有两种_4命题“两直线平行,内错角相等”的题设_,结论_5如图,要从小河a引水到村庄A,请设计并作出一最佳路线,理由是:_6如图,1=70,ab则2=_,7如图,若1=2,则互相平行的线段是_8如图,若ABCD,则ADC=_,9如图,ab,1=118,则2=_10如图B与_是直线_和直线_被直线_所截的同位角。二、选择题。(310=30分)11如图,ADE和CED是( )A、 同位角 B、内错角 C、同旁内角