1、贵州省2017年12月普通高中学业水平考试数学试卷注意事项:1 本试卷分为选择题和非选择题两部分,本试卷共6页,43题,满分150分。考试用时120分钟。2 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号填写在答题卡上,将条形码横贴在答题卡“考生条码区”。3 选择题选出答案后,用2B铅笔把答题卡上对应题目选项在答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。所有题目不能答在试卷上。4 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。参考公式:柱体体积公式:V=Sh,锥体体积公式: 球的表面积公式:,球的体积公式:选择题本题包括35小题,每小题3分,共计10
2、5分,每小题给出的四个先项中,只有一项是符合题意的。一 选择题(3*35=105)(1) 已知集合( ). . 0 .-1,1 .-1,0,1(2)( ) A. B. C. D. 1(3)函数的定义域是( ) A. B. C. D. (4)在平面中,化简( )A. B. C. D. (5). 某企业恰有员工400人,其中含行政管理人员20人,产业工人340人,其余为后期服务人员。按分层抽样的方法从中抽取40人为员工代表大会会员,则被抽取的后勤人员的人数为( )A. 4 B. 6 C. 8 D. 10(6). 已知是定义在上的奇函数, =( )A. 2 B. 1 C. 0 D. -17. 如图,
3、边长为2的正方形ABCD中,E是边AB的中点,在该正方形区域内随机取一点Q,则点Q落在内的概率为( )A. B. C. D. 8.已知( )A. 12 B. C. D. 9. 在空间直角坐标系中,已知两点A(-2,3,4),B(2,3,-2),则线段AB的中点的坐标为( )A. (-2,0,3) B. (-4,0,6) C. (0,3,1) D. (0,6,2)10.函数的最小值为( )A. 3 B. -3 C. 1 D. -111.函数的图像大致是( )12.已知数列( )A. 4 B. 7 C. 10 D. 1313.不等式的解集是( )A. B. C. D.14.已知在幂函数的图像过点(
4、2,8),则 这个函数的表达式为( )A. B. C. D. 15.已知平面向量=( )A. -3 B. -1 C. 3 D. 2 16.在等比数列( )A. B. -3 C. 3 D. 17.已知,则的大小关系为( )A. acb B. cab C. cba D. bca18. 棱长为2 的正方体的内切球的表面积为( )A. 3 B. 4 C. 3 D. 419.为了得到函数的图像可由函数图像( )A. 向左平移个单位长度 B. 向右平移个单位长度C. 向左平移个单位长度 D. 向右平移个单位长度20.若A,B互为对立事件,则( )A.P(A)+P(B)1 C. P(A)+P(B)=1 D.
5、 P(A)+P(B)=021. 直线的倾斜角,则其斜率的取值范围为( )A. B. C. D. 22.等差数列( )A. 72 B. 36 C. 20 D. 1823.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为( )A. 4 B. 3 C. 2 D. 124.已知中,且( )A. B. C. D.25.已知直线经过点(1,2),倾斜角为,则该直线的方程是( )A. B. C. D. 26.一个几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D. 27.在2005年到2010年的“十一五”期间,党中央、国务院坚持优先发展教育,深入实施科教兴国战略,某普通高中在校学生人
6、数由2300人增加到3500人,这5年间该校学生人数的年平均增长率x应满足的关系式为( )A. B. C. D. 28.如图,长方体中,AB=AD=2,则直线与平面ABCD所成角的大小为( )A. B. C. D. 29. 函数的最小正周期是( )A. B. C. 2 D. 430.执行如图所示的程序框图,若输入a,b,c的值分别是1,2,3,则输出a,b,c的值依次为( )A. 2,3,3 B. 2,3,1 C. 3 ,2,1 D. 1,3,331.在中,已知( )A. 3 B. C. D.32.已知的面积为( )A. B. C. D.33.若,则不等式:中一定成立的个数是( )A.1 B.
7、 2 C. 3 D.434.已知圆关于直线对称,则由点向圆C所作的切线中,切线长的最小值是( )A. 2 B. C. 3 D.35.已知函数恰有两个零点,则实数的取值范围是( )A. B. C. D.二 填空题(3*5=15)36. 函数的最大值是 ;37. 已知直线= ;38. 由一组样本数据求得的回归直线方程是,已知的平均数,则的平均数 ;39. 不等式组所表示的平面区域的面积为 ;40. 已知,则 ;三解答题:本题共3小题,每小题10分,共30分。解答题应写出文字说明,证明过程或推演步骤。41.贵阳河滨公园是市民休闲游玩的重要场所,某校社团针对“公园环境评价”随机对20位市民进行问卷调查打分(满分100分)得茎叶图如下:(1)写出女性打分的中位数和众数;(2)从打分在80分以下(不含80分)的市民中随机请2人进一步提建议,求这2人都是男性市民的概率。 42.如图,四棱锥P-ABCD中,底面ABCD是正方形,。(1) 求证:;(2) 若,求点A到平面PCD的距离。43.已知定义在上的函数。(1)判断的奇偶性并证明;(2)已知不等式恒成立,求关于的函数的最小值。