收藏 分销(赏)

等比数列的前n项和教学设计.docx

上传人:仙人****88 文档编号:5777854 上传时间:2024-11-19 格式:DOCX 页数:3 大小:63.87KB 下载积分:10 金币
下载 相关 举报
等比数列的前n项和教学设计.docx_第1页
第1页 / 共3页
等比数列的前n项和教学设计.docx_第2页
第2页 / 共3页


点击查看更多>>
资源描述
等比数列的前n项和教学设计 一 、设计思想 《新课程改革纲要》提出,要“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力”。 二、教学目标 理解并掌握等比数列前n项和公式的推导过程公式的特点,在此基础上能初步应用公式解决与之有关的问题。通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。 三、教学重点、难点 教学重点是公式的推导、公式的特点和公式的运用。 教学难点是公式的推导方法和公式的灵活运用。公式推导 四、教学过程设计: 学生是认知的主体,设计教学过程必须遵循学生的认知规律, 尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程: (一)创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印 度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢? (二)师生互动,探究问题 在肯定他们的思路后,我接着问: 是什么数列?有何特征? 应归结为什么数学问题呢? 【学情预设】:探讨1:设 ,记为 (1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍) 探讨2: 如果我们把每一项都乘以2,就变成了它的后一项, (1)式两边同乘以2则有 ,记为(2)式。比较(1)(2)两式,你有什么发现? (三)类比联想,解决问题 这时我再顺势引导学生将结论一般化,设等比数列,首项为,公比为,如何求前n项和?这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。 【设计意图】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。 【学情预设】:在学生推导完成后,我再问:由得对不对?这里的能不能等于1?等比数列中的公比能不能为1?时是什么数列?此时?(这里引导学生对进行分类讨论,得出公式,同时为后面的例题教学打下基础。)再次追问:结合等比数列的通项公式,如何把用、、表示出来?(引导学生得出公式的另一形式) (四)讨论交流,延伸拓展 在此基础上,我提出:探究等比数列前n项和公式,还有其 它方法吗?我们知道, 那么我们能否利用这个关系而求出呢?根据等比数列的定义又有,能否联想到等比定理从而求出呢?源于课本,又高于课本,对学生的思维发展有促进作用. (五)变式训练,深化认识 例1:求等比数列前8项和; 变式 1、等比数列前多少项的和是; 变式2、等比数列求第5项到第10项的和; 变式3、等比数列求前2n项中所有偶数项的和。 首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。 (六)例题讲解,形成技能 例2:求和。 (七)总结归纳,加深理解 以问题的形式出现,引导学生回顾公式、推导方法,鼓励学 生积极回答,然后老师再从知识点及数学思想方法两方面总结。 (八)课后作业,分层练习 必做:P66练习1:(1)、(2);2 选作:思考题:(1)求和 (2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请 问尖头几盏灯?”这首中国古诗的答案是多少? 七、教学反思:对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服