1、函数的单调性一、 教学内容的分析1教材的地位和作用首先,1.3函数的单调性是高中新课程标准人教版必修一第一章集合与函数概念的第三节。学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础其次,学习函数单调性的必然性。函数的单调性是学生学习函数概念,函数的表示法基础上,为了更好的把握变化规律,于是我们必然要研究学习函数的性质。最后,函
2、数单调性的应用。函数的单调性是函数的重要性质,是研究学习函数的值域、图像、解不等式、求极限、解决参数恒成立等其它数学知识的重要基础,是解决数学问题的常用工具,同时也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.2教学的重点和难点对于函数的单调性,学生的认知困难主要在两个方面:首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的. 根据以上的分析和教学大纲对单调性的教学要求,本节
3、课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.二、 教学目标的确定根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:1使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法2通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力 3通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊
4、到一般,从感性到理性的认知过程三、 教学方法的选择1教学方法本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,培养能力.2教学手段 教学中使用了多媒体投影和计算机来辅助教学目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识四、 教学过程的设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下: (一)创设情境,引入课题概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象
5、有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从具体材料_桥的形状入手,使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神.然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等). 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小 (二)归纳探索,形成概念在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,
6、引导学生分别完成对单调性定义的三次认识.1借助图象,直观感知本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.在本环节的教学中,我主要设计了两个问题:问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?引导学生观察图象从左向右的变化趋势在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数。二次函数函数图象的上升与下降要分段说明,通过讨论使学生
7、明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质学生直观上从图像体验函数的单调性。问题2:列表描述f(x)=x2随x的变化函数值得变化特征:x-3-2-10123f(x)9410149以学生熟悉的二次函数f(x) =x2为例结合问题1的函数图像特征,让学生从数值变化的角度认识函数的单调性。问题3:对于一般的函数f(x)如何用符号语言描述x与f(x)上升(下降)的这种情况?(探究规律,理性认识让学生展开讨论交流)2抽象思维,形成概念本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。教学中,我引导学生用严格的数学符号语言归纳
8、、抽象增函数的定义,并让学生类比得到减函数的定义.然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.3.常见函数的单调性:y=kx+b分k0:函数单调递增k0:函数单调递减y=ax2+bx+c分a0:对称轴单调递减,单调递增a0对称轴单调递增,单调递减k0, 单调递减,单调递减;k0, 单调递增,单调递增。引申:在区间A、B都有相同的单调性问:是否一定有单调性?(三)掌握证法,适当延展本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展.例1P-29课本
9、例题1培养学生从图像观察函数单调性,同时学生有可能有这样的疑问:在两个区间的公共点处,函数是增函数还是减函数?这里需要告知同学们:单独的一个点,函数值是唯一的确定常数,没有增减变化,所以不存在单调性问题。第二:函数在两个区间分别有相同的单调性,不能说函数在这两个区间的并集上有单调性。第三:有的函数有单调区间,有的函数定义域就根本不是区间,没有单调性。例2. P-29课本例题2.此题的目的:一是利用函数单调性证明物理学中的波意耳定律,体现函数单调性的初步应用,第二:明确用函数的单调性定义证明函数在某个区间上单调性的基本步骤。在引入导数后,用定义证明单调性的作用已经有所降低,我选择主要是考虑让学生
10、对证明过程有一个初步的认识.证明过程的教学分为三个环节:难点突破、详细板书、归纳步骤.1难点突破对于函数单调性的证明,大部分学生能完成取值和求差两个步骤:因此学生的难点主要是两个函数值求差后的变形方向以及变形的程度.问题主要集中在两个方面:一方面部分学生不知道如何变形,不敢动笔;另一方面部分学生在变形不彻底,理由不充分的情形下就下结论.针对这两方面的问题,教学中,我组织学生讨论,引导学生明确变形的主要思路是因式分解,考虑判断符号.2详细板书在上面分析的基础上,我对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯.3归纳步骤在板书的基础上,我引导学生
11、归纳利用定义证明函数单调性的方法和步骤(设元,求差,变形,断号,定论).通过对证明过程的分析,使学生明确每一步的必要性和目的,特别是第三步,让学生明确变形的方法以及变形的程度,帮助学生掌握方法,提高学生的推理论证能力为了巩固用定义证明函数单调性的方法,强化解题步骤,形成并提高解题能力,我设计了课堂练习:问题:除了用定义外,如果证得对任意的,且,有,能断定函数在上是增函数吗?教学过程中,我引导学生分析这种叙述与定义的等价性然后,让学生尝试用这种定义等价形式证明之前的课堂练习.这种方法进一步发展可以得到导数法,为今后用导数方法研究函数单调性埋下伏笔(四)归纳小结,提高认识本阶段通过学习小结进行课堂
12、教学的反馈,组织和指导学生归纳知识、技能、方法的一般规律,深化对数学思想方法的认识,为后续学习打好基础1学习小结在知识层面上,引导学生回顾函数单调性定义的探究过程,使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义.在方法层面上,首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫.2布置作业在布置书面作业的同时,为了尊重学生的个体差异,满足学生多样化的学习需要,我设计了探究作业供学有余力的同学课后完成.(1)探究的单调性目的是加深学生对定义的理解 ,并结合描点法画出函数的草图,学生体会到利用函数的单调性可以简化函数图象的绘制过程,体会由数到形的研究方法和引入单调性定义的必要性,加深对数形结合的认识共 6 页 第 6 页