1、作业标题:三角形面积计算教学设计作业内容:教学目标:1.知识目标:使学生理解三角形形的面积公式的推导过程,并会应用公式计算三角形的面积。2.能力目标:培养学生动手操作能力和思维能力;小组合作及交流能力。3.情感目标:渗透数学思想,有机地对学生进行辩证唯物主义观点的启蒙教育。教学重点:使学生理解三角形的面积公式,并会应用公式计算三角形的面积。教学难点:转化方法及平三角形面积公式的推导过程。课件及学具:多媒体课件、剪刀、两个完全一样的三角形。教学过程:一、复习铺垫1.师:孩子们,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形、梯形)2.出示第一个练习:复习长方形、正方形,平行四边形
2、的面积计算方法。师:你能不能用学过的知识判断出哪个图形的面积大?(学情预设:有同学可能说通过观察的方法知道第三个图形的面积大,教师给予肯定并总结观察是一种非常好的学习方法。有的同学可能说通过计算的方法得出了同样的结论,进而复习长方形、正方形的面积计算方法,并适时板书:长方形的面积=长宽,正方形的面积=边长边长。平行四边形的面积=底高)3.出示第二组练习,渗透转化思想。(1)先猜猜哪个图形的面积大?(2)把这两个图形放置于方格纸中,教师引导学生借助方格纸观察大小。(3)渗透转化思想:把第一个图形左边多出的部分,剪下并填补到右边缺少的部分,就把第一个图形转化成了一个长方形,很容易观察出两个图形的大
3、小。这种方法在数学上称为“转化”,利用转化的方法可以解决很多数学问题。二、精巧引入(出示两个花坛图片)师:这两个花坛哪个面积大呢?能像刚才那样切下一块吗?(不能!)对!现实生活中的实实在在的东西就不能用这种方法了,那就需要我们探求出如何求三角形的面积,今天,就让我们利用转化的思想共同探讨三角形的面积的计算方法。(板书课题:三角形的面积)三、探求新知1.动手操作。师:下面就请同学们一起动手,利用手中的剪刀、尺子和三角形纸板来研究一下三角形面积,然后在小组中说说你是怎么操作的,发现了什么,得出了什么结论?出示学习提示:你是怎样把一个平行四边形拼成一个三角形的?拼出的三角形和原来的平行四边形的面积变
4、了没有?你能根据平行四边形的面积公式推导出三角形的面积计算公式吗?4还有其他拼法吗?2.学生动手操作,教师指导。3.小组汇报。(教师跟随演示)4.(屏幕显示)我们可以把一个平行四边形转化成二个三角形,注意强调要沿着平行四边形的对角剪开才能拼成二个相等三角形。这个三角形的底与平行四边形的底相等,这个三角形的高与平行四边形的高相等,那么三角形的面积与平行四边形的面积一半。因为平行四边形的面积=底高,所以三角形的面积=1/2底高。5.小结板书公式。师:同学们真不简单,终于自己动手找到了三角形的面积公式,大家把公式齐读一遍。6.字母表示公式。如果三角形的面积用字母S表示,底用a表示,高用h表示,那么三
5、角形面积的计算公式可以写成:S=1/2ah。在含有字母的算式里,字母和字母中间的乘号可以记作“”或省略不写,所以这个公式还能写成:S=1/2ah或S=1/2ah。7.利用三道题巩固面积公式中的底和高的相对性。8.应用公式尝试例题。(1)过渡:如果给你那个三角形花坛的底和高,你能求出它的面积吗?(2)出示例题:三角形花坛的底是6m,高是4m,它的面积是多少平方米?(3)学生尝试练习。S=1/2ah=1/264=12(m2)(4)集体评讲。四、巩固练习,拓展延伸1.师:同学们,我们利用“转化”的思想解决了实际问题,你们知道是谁最先发明了这种方法吗?介绍我国著名数学家:刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。他利用出入相补原理来计算平面图形的面积。出入相补原理就是把一个图形经过分割、移补而面积保持不变,以此来计算出它的面积。他还提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这一切不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。因此,人们把他称作“中国数学史上的牛顿”。