资源描述
苏教版小学五年级数学解决问题竞赛(含答案)
一、拓展提优试题
1.如图所示,为平行四边形外一点。已知的面积等于平方厘米,的面积等于平方厘米。则平行四边形的面积是
2.(7分)将偶数按下图进行排列,问:2008排在第 列.
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26
…
3.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?
4.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .
5.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个 元,笔每支 元.
6.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有 个.
7.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块 块.
8.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.
9.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月 日.
10.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距 米.
11.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是 .
12.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是 .
13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有 张 .
14.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是 元.
15.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水 千克.
【参考答案】
一、拓展提优试题
1.
[解答]作,由于,所以。容易知道,由于,所以
而平行四边形的面积为,所以
2.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.
解:2008是第2008÷2=1004个数,
1004÷8=125…4,
说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.
故答案为:4.
3.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.
解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)
=[2×1+11+4×3﹣10]÷3
=[2+11+12﹣10]÷3
=15÷3
=5(人)
2×4+(5﹣2)×3+11
=8+3×3+11
=8+9+11
=28(件)
答:一共有28件礼物.
4.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,
而已知1000以内最大的完全平方数是312=961,
根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,
答:1000以内的最大希望数是961.
故答案为:961.
5.解:根据题干分析可得:
5个笔记本+5支笔=32元;
则1个笔记本+1支笔=6.4(元),
3个笔记本+3支笔+4支笔=30.4(元),
所以4支笔=30.4﹣3×6.4=11.2(元),
所以1支笔的价格是:11.2÷4=2.8(元),
则每个笔记本的价钱是:6.4﹣2.8=3.6(元).
答:每个笔记本3.6元,每支笔2.8元.
故答案为:3.6;2.8.
6.解:根据题干分析可得:
3个红球的盒子数是:42﹣27=15(个),
所以放3个白球的盒子数也是15(个),
则放2白一红的盒子数是:100﹣15﹣15﹣27=43(个),
所以白球的总数有:15×3+43×2+27=158(个),
答:白球共有158个.
故答案为:158.
7.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;
所以,至少需要这种长方体木块:
(60×60×60)÷(5×4×3),
=216000÷60,
=3600(块);
答:至少需要这种长方体木3600块.
故答案为:3600.
8.解:列举如下:
1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;
通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.
故至少需要选出6个数.
故答案为6.
9.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,
因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;
经检验,只有26﹣12=14,14是7的倍数,
即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,
答:小胖的生日是5月26日.
故答案为:26.
10.解:(60×10+50×4)÷(60﹣50),
=(600+200)÷10,
=800÷10,
=80(分钟),
60×(80﹣10),
=60×70,
=4200(米).
答:小明家到学校相距4200米.
故答案为:4200.
11.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,
所以差最小的是:9和5,
所以这两个数分别是:
9×3=27
5×3=15
27﹣15=12
答:这两个数的差最小是12.
故答案为:12.
12.解:依题意可知:
要满足是六合数.分为是3的倍数和不是3的倍数.
如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.
如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.
大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;
2010是(1,2,3,5,6倍数)不符合题意;
2016是(1,2,3,4,6,7,8,9倍数)满足题意.
2016<2240;
故答案为:2016
13.解:彤彤给林林6张,林林有总数的;
林林给彤彤2张,林林有总数的;
所以总数:(6+2)÷(﹣)=96,
林林原有:96×﹣6=66,
故答案为:66.
14.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)
=5000××××
=5000(元)
答:小胖这个月的工资是5000元.
故答案为:5000.
15.解:2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:B桶中原来有水3.5千克.
故答案为:3.5.
展开阅读全文