收藏 分销(赏)

初探分类思想在初中数学教学中的渗透.doc

上传人:仙人****88 文档编号:5675082 上传时间:2024-11-15 格式:DOC 页数:5 大小:41.50KB
下载 相关 举报
初探分类思想在初中数学教学中的渗透.doc_第1页
第1页 / 共5页
初探分类思想在初中数学教学中的渗透.doc_第2页
第2页 / 共5页
初探分类思想在初中数学教学中的渗透.doc_第3页
第3页 / 共5页
初探分类思想在初中数学教学中的渗透.doc_第4页
第4页 / 共5页
初探分类思想在初中数学教学中的渗透.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 初探分类思想在初中数学教学中的渗透丹阳市司徒中学 郑海平推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的的关注学生的学习方法和策略。数学家乔治波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”。随着课程改革的深入,“应试教育”向“素质教育”转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。如基本知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教

2、育。数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。分类讨论思想,贯穿于整个中学数学的全部内容中。需要运用分类讨论的思想解决的数学问题,就其引起分类的

3、原因,可归结为:涉及的数学概念是分类定义的;运用的数学定理、公式或运算性质、法则是分类给出的;求解的数学问题的结论有多种情况或多种可能;数学问题中含有参变量,这些参变量的取值会导致不同结果的。应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对分类思想的主动应用一

4、、 渗透分类思想,养成分类的意识每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数的分类,绝对值的意义,不等式的性质等,都是渗透分类思想的很好机会。教授完负数、有理数的概念后,及时引导学生对有理数进行分类,让学生了解到对不同的标准,有理数有不同的分类方法,如分为:整数 正有理数有理数 有理数 零分数 负有理数为下一步分类讨论奠定基础。认识数a可表示任意数后,让学生对数a 进行分类,得出正数、零、负数三类。讲解绝对值的意义时,引导学生得到如下分类:a

5、( a 0)a= 0 ( a=0)a (a 0)通过对正数、零、负数的绝对值的认识,了解如何用分类讨论的方法学习理解数学概念。又如,两个有理数的比较大小,可分为:正数和正数、正数和零、正数和负数、负数和零、负数和负数几类情况来比较,而负数和负数的大小比较是新的知识点,这就突出了学习的重点。结合“有理数”这一章的教学,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要

6、注意分清层次,不越级讨论。二、 学习分类方法,增强思维的缜密性在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。分类的方法常有以下几种:1、根据数学的概念进行分类有些数学概念是分类给出的,解答此类题,一般按概念的分类形式进行分类。例1, 化简 -1解:这是按绝对值的意义进行分类。可按x1 时 , x = 1时 , x 1 时 , 三种情况讨论进行。例2、比较a 与2a 易得的错误,导致错误在于没有注意到数a 可表示不同类的数。而对数a 进行分类讨论,既可得到

7、正确的解答: a0 时 , a = 0 时 , a a3的形式,然后根据不等式的性质可分为a20,a20,和a20三种情况分别解不等式。当a20,即a2时,不等式的解是x(a-3)/(a-2)当,a20,即a2时,不等式的左边0,不等式的右边1因为01,所以不等式的解是一切实数。当a20,即a2时,不等式的解是x(a-3)/(a-2)3、根据图形的特征或相互间的关系进行分类如三角形按角分类,有锐角三角形、直角三角形、钝角三角形,直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。例如 等腰三角形一腰上的高与另一腰的夹角为30,底边长为a,则其腰上的高是 。(2002

8、年河南中考题)分析:本题根据图形的特征,把等腰三角形分为锐角三角形和钝角三角形两类作高CD,如图,可得腰上的高是 或 从几何图形的点和线出现不同的位置进行分类在证明圆周角定理时。由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况。这是一种从定理的证明过程中反映出来的分类讨论的思想和方法。它是根据几何图形点和线出现不同位置的情况逐一解决的方法。教材中在证明弦切角定理:弦

9、切角等于它所夹的弧所对的圆周角。也是如此分圆心在弦切角的一条边上,弦切角的内部、弦切角的外部三种不同情况解决的。三、引导分类讨论,提高合理解题的能力初中课本中有不少定理、法则、公式、习题,都需要分类讨论,在教授这些内容时,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。一般来讲,利用分类讨论思想和方法解决的问题有两大类:;其一是涉及代数式或函数或方程中,根据字母不同的取值情况,分别在不同的取值范围内讨论解决问

10、题。其二是根据几何图形的点和线出现不同位置的情况,逐一讨论解决问题例4、已知函救y(m-1)x2(m-2)x1(m是实数).如果函数的图象和x轴只有一个交点,求m的值.分析:这里从函数分类的角度讨论,分 m1=0 和 m10 两种情况来研究解决问题。解:当ml 时函数就是一个一次函数yx1,它与x轴只有一个交点(-1,0)。当 m1 时,函数就是一个二次函数y(m1)x2(m2)x1当(m2)2+4(m1)=0,得 m=0.抛物线 y=x22x1,的顶点(1,0)在x轴上例5、 函数 y =x6 x5 + x4- x3+ x2 x +1,求证:y 的值恒为正数。分析:将y的表达式分解因式,虽可

11、证得结论但较难。分析可发现,若将变量x在实数范围内适当分类,则问题容易解决。证明: 当x 0时x5 - x3x 0 , y1恒成立; 当0 x x5 , x2 x3, 1 x y 0 成立; 当x = 1 时, y = 1 0 成立; 当x 1时y = (x6 x5) + (x4 x3) + (x2 x ) + 1 x6 x5 , x4 x4 , x2 x y 1成立综上可知,y 0 成立。利用现有教材,教学中着意渗透并力求帮助学生初步掌握分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。相信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。参考文献: 1 全日制义务教育课程标准2 初中生学习法与能力培养3 数学思想和数学方法

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服