资源描述
六年级人教版上册数学计算题附答案
1.直接写出得数。
2.直接写得数。
3.直接写得数。
4.直接写出得数。
5.直接写出得数。
3.4+5.7= 27×= -= ×= 25×40%=
5.6÷0.1= ÷3= -= ÷= 1++=
6.口算。
0.72÷0.8= 543-398= 0.78+2.2= 31×79≈
3.5×40%=
7.直接写得数。
430+280= 540-320= 243+126= 637-268=
23×30= 8×25= 720-90= 390-13=
5.6+2.4= 8-4.9= 2.6×0.3= 0.56÷0.8=
+= += 1-= -=
×1.2= ×= 24÷= ÷=
8.直接写得数。
1.2+3.9= 2.5×3= 0.36÷0.6= 803-204≈
20×498≈
9.直接写出得数。
0.46+3.8= 0.125×2.4= 42÷0.7= 2.5×0÷3+3=
45%+1.51= 0.72×= 4.25×99+4.25=
10.直接写出得数。
0.46+3.8= 0.125×2.4= 42÷0.7= 2.5×0÷3+3=
45%+1.51= 0.72×= 4.25×99+4.25=
11.直接写出得数。
12.直接写出得数。
88+8.8= 90÷5= 0.1÷0.2= 0.12×0.8= 0.32=
÷10= ×0.25= -= += ×7÷×7=
13.直接写出得数。
14.口算。
15.直接写出得数。
(1)3.26+2.4= (2)1.52= (3)4.82-0.99=
(4)1-75%= (5)6.4×= (6)3.6÷0.6=
(7)×5÷×5= (8)-×0=
16.用简便方法计算下面各题。
5.78-1.26-2.74
17.用递等式计算。(带※的题要简算)
※ ※ ※
18.脱式计算,能简算的要简算。
19.用你喜欢的方法计算。
(1) (2)
(3) (4)
20.脱式计算,能简算的要简算。
21.下面各题,怎样简便怎样算。
2.5×9×4 36×(+) 42×[169-(78+35)]
22.用喜欢的方法计算。
(1.5-1.5×0.6)÷0.8 73.2÷24+2.5
23.下面各题怎样简便就怎样算。
24.计算下面各题,怎样简便就怎样算。
25.脱式计算(能简算的要简算)。
(1)270-49-156 (2)(5.9+1.65)÷0.25 (3)3.8×99+3.8
(4)4×0.37×25 (5)÷[×(-)] (6)÷7+×
26.用合理的方法计算,并写出过程。
836-192÷8×16 1.4÷(1.4+0.7) 0.8×0.4×12.5×0.25
÷6+÷20 14×19×(+) ÷[(+)÷]
27.计算,能简算的要简算。
28.简便计算。
29.计算下面各题,能简算的要简算。
30.计算下面各题,能简算的要简算。
(1) (2) (3)
(4) (5) (6)
31.解方程。
32.解方程。
33.解方程。
(1) (2) (3)
34.解方程。
(1) (2)2x+40%x=7.2 (3)
35.解方程。
36.解方程。
x+x= x÷=18× 40%x+=
37.解方程。
38.解方程。
39.解方程。
40.解方程。
41.解方程。
42.解方程。
x-20%x=9.6
43.解方程。
44.解方程。
45.解方程。
46.求下图中阴影部分的面积。
47.求下图阴影部分的面积,单位:cm。
48.求阴影部分的面积。(单位:厘米)
49.求阴影部分的面积。
50.求如图中阴影部分的面积。
51.计算下图的周长和面积(单位:m)
52.求下面图形中阴影部分的面积。(单位:厘米)
53.求下图阴影部分的面积。
54.计算阴影部分的面积。(单位:dm)
55.求阴影部分的面积及周长各是多少。
56.计算下面左边图形阴部分的周长和右面图形阴影部分的面积。
57.求出下图阴影部分的面积。(单位:厘米)
58.求下图中阴影部分的面积。(单位:cm)
59.求阴影的面积。(单位:厘米)
60.求阴影部分的面积。
【参考答案】
1.9;;0;;
22;21;;;
;;;
【解析】
2.;;;1;16;
;;2;0.02;4
【解析】
3.;;6.6;;
10;;0.54;3.6
【解析】
6.6
10 0.54 3.6
4.;1.3;15;5.5;
;18;68;
【解析】
5.1;15;;;10;
56;;;;2
【解析】
6.9;145;2.98;2400;
1.4;;;3.6
【解析】
7.710;220;369;369;
690;200;630;377;
8;3.1;0.78;0.7;
1;;;;
;;28;
【解析】
8.1;7.5;0.6;600;
3;;2;10000
【解析】
9.26;0.3;60;3
1.96;0.4;425;
【解析】
10.26;0.3;60;3
1.96;0.4;425;
【解析】
11.115;15.01;7.2;7.8
2;6000;28.26;1
【解析】
12.8;18;0.5;0.096;0.09
;;;;49
【解析】
13.;2;;1
;5;28;1
【解析】
14.7;0.6;422;7.09;
;;;0.9
【解析】
15.(1)5.66;(2)2.25;(3)3.83
(4)0.25;(5)5.6;(6)6
(7)25;(8)
16.78;6.25;19
【解析】
(1)利用减法的性质,先计算(1.26+2.74)的和,再计算减法;
(2)=0.625,提取相同的小数0.625,利用乘法分配律简便计算;
(3)除以转换成乘36,利用乘法分配律简便计算。
5.78-1.26-2.74
=5.78-(1.26+2.74)
=5.78-4
=1.78
=
=
=
=6.25
=
=
=9+16-6
=19
17.;1.6;
;70;1
【解析】
(1)先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的除法;
(2)先算小括号里面的减法,再算中括号里面的乘法,最后算括号外面的除法;
(3)先算小括号里面的减法和乘法,再算括号外面的除法;
(4)、(5)、(6)根据乘法分配律进行简算。
(1)
(2)
(3)
(4)
(5)
(6)
18.1;
;
;17
【解析】
(1)根据加法交换律计算;
(2)先算除法、乘法,再算减法;
(3)把94写成,再根据乘法分配律计算;
(4)先算小括号里的减法,再算中括号里的除法,最后算中括号外的乘法;
(5)先把除法变为乘法,再根据乘法分配律计算;
(6)根据乘法分配律计算。
(1)
(2)
(3)
(4)
(5)
(6)
19.(1)576;(2)0
(3)20;(4)
【解析】
(1)根据运算顺序,先计算除法,再计算乘法;
(2)根据交换律和结合律把式子转化为,再进行计算;
(3)根据乘法分配律进行计算即可;
(4)把中括号里的算式根据减法的性质转化为,再进行计算。
(1)
(2)
(3)
(4)
20.4;
62.5;333000
【解析】
,改写成进行简算;
,可先算小括号中的减法,再算中括号中的减法,最后算乘法;
,可利用乘法分配律进行简算;
,改写成333×3×222+333×334后进行简算。
=
=5-1
=4
=
=
=
=6.25×(2.8+7.2)
=6.25×10
=62.5
=333×3×222+333×334
=333×(3×222)+333×334
=333×(666+334)
=333×1000
=333000
21.90;34;2352
【解析】
(1)交换9和4的位置,利用乘法交换律简便计算;
(2)利用乘法分配律简便计算;
(3)先计算小括号里的加法,再计算中括号里的减法,最后计算中括号外的乘法。
2.5×9×4
=2.5×4×9
=10×9
=90
36×(+)
=36×+36×
=16+18
=34
42×[169-(78+35)]
=42×[169-113]
=42×56
=2352
22.75;5.55;
7.5;;
【解析】
(1)(2)按照四则混合运算的顺序计算;
(3)逆用减法的性质进行计算;
(4)把分数化成小数,再根据乘法分配律计算;
(5)把改写成再计算;
(6)先对括号里的分数进行通分,把小数0.6改写成分数,再计算。
(1)(1.5-1.5×0.6)÷0.8
=(1.5-0.9)÷0.8
=0.6÷0.8
=0.75
(2)73.2÷24+2.5
=3.05+2.5
=5.55
(3)
=
=
=
=
(4)
=
=
=3.75×2
=7.5
(5)
=
=
=
(6)
=
=
=
=
23.64;24.4;353.5
【解析】
(1)按照分数四则混合运算的顺序,先算加法,再算乘法,最后算除法;
(2)运用“带着符号搬家”的方法,把原式改写为19.92-9.92+14.4,再从左往右依次计算;
(3)把101分解成100+1,再运用乘法分配律简算。
=
=4÷
=64
=19.92-9.92+14.4
=10+14.4
=24.4
=(100+1)×3.5
=100×3.5+1×3.5
=350+3.5
=353.5
24.29;40
1.37;
【解析】
(1)运用乘法分配律进行简算;
(2)运用乘法分配律进行简算;
(3)运用减法性质进行简算;
(4)先算小括号里的减法,再算中括号里的减法,最后算括号外的乘法。
24×(+)
=24×+24×
=9+20
=29;
61×40%+38×+0.4
=(61+38+1)×40%
=100×40%
=40;
5.37-1.47-2.53
=5.37-(1.47+2.53)
=5.37-4
=1.37;
[1-(-)]×
=[1-]×
=×
=
25.(1)65;(2)30.2;(3)380;
(4)37;(5);(6)
【解析】
(1)从左向右进行计算;
(2)先算小括号里的加法,再算括号外的除法;
(3)运用乘法分配律进行简算;
(4)运用乘法交换律进行简算;
(5)先算小括号里的减法,再算中括号里的乘法,最后算括号外的除法;
(6)把除以7化成乘,再运用乘法分配律进行简算。
(1)270-49-156
=221-156
=65
(2)(5.9+1.65)÷0.25
=7.55÷0.25
=30.2
(3)3.8×99+3.8
=3.8×(99+1)
=3.8×100
=380
(4)4×0.37×25
=4×25×0.37
=100×0.37
=37
(5)÷[×(-)]
=÷[×]
=÷
=
(6)÷7+×
=×+×
=(+)×
=1×
=
26.452;;1
;33;
【解析】
①先算除法,再算乘法,最后算减法;
②先算小括号里面的加法,再算括号外面的除法;
③根据乘法交换律和结合律进行计算;
④、⑤根据乘法分配律进行计算;
⑥先算小括号里面的加法,再算中括号里面的除法,最后算括号外面的除法。
836-192÷8×16
=836-24×16
=836-384
=452;
1.4÷(1.4+0.7)
=1.4÷2.1
=;
0.8×0.4×12.5×0.25
=(0.8×12.5)×(0.25×0.4)
=10×0.1
=1;
÷6+÷20
=×+×
=(+)×
=×
=;
14×19×(+)
=14×19×+14×19×
=19+14
=33;
÷[(+)÷]
=÷[÷]
=÷3
=
27.;;80;4
【解析】
(1)把15拆成14+1,然后运用乘法分配律进行计算即可;
(2)先算乘除法后算减法即可;
(3)先算乘法再算加法即可;
(4)先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的除法即可。
=(14+1)×
=14×+1×
=13+
=
=
=
=
=
=80
=
=
=4
28.;21;0.237
【解析】
(1)提取相同的分数,利用乘法分配律简便计算;
(2)交换3.2和7.22的位置,利用加法交换律和加法结合律简便计算;
(3)利用除法的性质,先计算8×1.25,再计算除法。
=
=
=
=
=11+10
=21
=
=2.37÷10
=0.237
29.;34;;
【解析】
(1)把除以6化成乘,再运用乘法的分配律进行简算;
(2)先算小括号里的减法,再算中括号里的除法,最后算括号外的乘法;
(3)先算小括号里的加法,再算括号外的除法;
(4)先算小括号里的乘法,再算小括号里的减法,最后算括号外的除法。
(1)
(2)
(3)
(4)
30.(1);(2);(3);
(4);(5)10;(6)18
【解析】
(1)从左往右依次计算;
(2)把除法化成乘法,把0.25化成,再运用乘法分配律的逆运算a×c+b×c=(a+b)×c进行简算;
(3)先算小括号里的减法,再算中括号里的乘法,最后算中括号外的除法;
(4)先算括号里的加法,再算括号外的除法;
(5)运用乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)进行简算;
(6)运用乘法分配律(a+b)×c=a×c+b×c进行简算。
(1)
(2)
(3)
(4)
(5)
(6)
31.;;
【解析】
(1)求方程的解,根据等式的性质2,方程左右两边同时除以,即可求出方程的解;
(2)求方程的解,先计算,方程两边同时除以它们的差,即可求出方程的解;
(3)求方程的解,根据等式的性质2,方程两边同时乘,即可求出方程的解。
(1)
解:
(2)
解:
(3)
解:
32.;;
【解析】
(1)首先化简,然后根据等式的性质,两边同时乘即可。
(2)根据等式的性质,两边同时乘即可。
(3)首先根据等式的性质,两边同时减去,然后两边同时乘即可。
(1)
解:
(2)
解:
(3)
解:
33.(1);(2);(3)
【解析】
(1)利用等式的性质2,方程两边同时除以;
(2)利用等式的性质2,方程两边先同时乘,再同时除以;
(3)先化简方程左边含有字母的式子,再利用等式的性质2,方程两边同时除以。
(1)
解:
(2)
解:
(3)
解:
34.;;
【解析】
第1题,根据等式的性质2,28除以,得到x的值;第2题,含x的项进行合并,得到,再计算x的值;第3题,相当于是被除数,=,再计算x的值。
解:
解:
解:
35.=22.4;=125.5
【解析】
用等式的性质解方程。
(1)先简化方程,然后方程两边同时除以,求出方程的解;
(2)把看作一个整体,把10%化成0.1,方程两边先同时除以0.1,再同时减去,求出方程的解。
(1)
解:
(2)
解:
36.x=;x=;x=
【解析】
(1)先把方程左边的合并,再利用等式的性质2,两边同时除以,求出未知数;
(2)先计算方程右边的乘法,再利用等式的性质2,两边同时乘,求出未知数;
(3)方程左右两边同时减去,再同时除以0.4,求出未知数。
x+x=
解:x=
x=÷
x=
x÷=18×
解:x÷=12
x=12×
x=
40%x+=
解:40%x=-
0.4x=
x=÷0.4
x=
37.;;;
【解析】
解:
解:
解:
38.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;
方程中含有括号时,把括号看作一个整体,据此解方程即可。
(1)
解:
(2)
解:
(3)
解:
39.x=3;x=;x=36
【解析】
(1)先化简方程,根据等式的性质,方程两边同时除以即可得解;
(2)先将百分数和小数化为分数,根据等式的性质,方程两边同时加上x,再减去,最后除以即可得解;
(3)先化简方程,根据等式的性质,方程两边再同时加上5,最后方程两边同时除以即可得解。
(1)x-x=
解:x=
x=÷
x=×
x=3
(2)-37.5%x=0.125
解:-x=
-x+x=+x
x=-
x=
x=÷
x=×
x=
(3)(x-6)×=25
解:x-5=25
x=30
x=30÷
x=30×
x=36
40.;;
【解析】
,先将左边进行合并,再根据等式的性质2解方程;
,先写成的形式,根据等式的性质1和2,两边同时-0.625,再同时÷2即可。
,根据比与除法的关系,写成,再根据等式的性质2,两边同时×即可。
解:
解:
解:
41.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此计算。
(1)
解:
(2)
解:
(3)
解:
42.x=128;x=12;x=
【解析】
①可以把看成一个整体,应用等式的性质1,方程左右两边同时减去6,再应用等式性质2,方程左右两边同时除以,得到方程的解;
②逆用乘法分配律,百分数化为小数,将方程整理成0.8x=9.6,最后应用等式的性质2,方程左右两边同时除以0.8,得到方程的解;
③含有未知数的项作为减数,可应用减法中各部分的关系,将方程整理成,最后应用等式的性质2,将方程左右两边同时除以,得到方程的解。
解:
x-20%x=9.6
解:(1-0.2)x=9.6
0.8x=9.6
x=9.6÷0.8
x=12
解:
43.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此解答。
(1)
解:
(2)
解:
(3)
解:
44.x=;x=;x=42.5
【解析】
,根据等式的性质2,两边先同时×,再同时×2即可;
,根据等式的性质1和2,两边先同时-的积,再同时×即可;
,根据等式的性质1和2,两边先同时×5,再同时+2.5即可。
解:
x=
解:
x=
解:
x=42.5
45.;;
【解析】
(1)先两边同时乘,再两边同时除以;
(2)先将12.5%化成分数,左边化简后,两边同时除以;
(3)先两边同时减去,再两边同时除以0.5。
(1)
解:
(2)
解:
(3)
解:
46.5cm2
【解析】
如图所示,①和②的面积相等,则阴影部分是一个梯形,梯形的面积=(上底+下底)×高÷2,把题中数据代入公式计算即可。
(6-3+6)×3÷2
=9×3÷2
=27÷2
=13.5(cm2)
所以,阴影部分的面积是13.5cm2。
47.A
解析:5cm2
【解析】
如下图所示,添加一条辅助线,左边阴影部分的面积等于A部分的面积,而A部分和另一块阴影组成一个梯形,则原来两块阴影部分的面积之和等于梯形的面积。梯形的面积=(上底+下底)×高÷2,据此代入数据计算。
(12-5+12)×5÷2
=19×5÷2
=47.5(cm2)
48.4平方厘米
【解析】
通过观察可知:阴影部分的面积可以转化成圆环面积的一半,根据圆环面积计算公式:S=π(R2-r2),代入数值计算即可。
(平方厘米)
49.86cm2
【解析】
四个扇形拼成一个圆,所以阴影部分的面积等于正方形的面积减去圆的面积,根据圆的面积公式:,正方形的面积公式:,把数据代入公式解答。
(cm)
(cm2)
所以阴影部分的面积是86cm2。
50.48平方厘米
【解析】
观察图形可得:阴影部分的面积长方形面积半圆的面积,长方形的长是12厘米,宽是厘米,圆的直径是12厘米,然后再根据长方形的面积公式,圆的面积公式进行解答。
12×(12÷2)-3.14×(12÷2)2÷2
=12×6-3.14×36÷2
=72-3.14×18
=72-56.52
=15.48(平方厘米)
51.C
解析:8m;1314m2
【解析】
组合图形的周长等于一个圆的周长加上长方形的两条长,利用圆的周长公式:C=,再加2个50m即可得解;组合图形的面积等于一个圆的面积加上长方形的面积,利用圆的面积公式:S=和长方形的面积公式:S=ab,分别计算出圆的面积和长方形的面积,再把两个图形的面积相加即可得解。
3.14×20+50×2
=62.8+100
=162.8(m)
3.14×(20÷2)2+50×20
=3.14×102+1000
=3.14×100+1000
=314+1000
=1314(m2)
52.44平方厘米
【解析】
从图中可知,阴影部分的面积=正方形的面积-圆的面积;其中正方形的面积=边长×边长,圆的面积S=πr2,代入数据计算即可。
正方形面积:4×4=16(平方厘米)
圆的面积:
3.14×(4÷2)2
=3.14×4
=12.56(平方厘米)
阴影部分面积:16-12.56=3.44(平方厘米)
53.5cm2
【解析】
从图中可知,阴影部分的面积=圆的面积-正方形的面积;其中圆的面积用公式S=πr2求解;把正方形用一条对角线分成两个完全一样的三角形,三角形的底等于圆的直径,高等于圆的半径,根据三角形的面积=底×高÷2,求出一个三角形的面积,再乘2,就是正方形的面积。
圆的面积:
3.14×(10÷2)2
=3.14×25
=78.5(cm2)
正方形的面积:
10×(10÷2)÷2×2
=10×5÷2×2
=50÷2×2
=50(cm2)
阴影部分的面积:
78.5-50=28.5(cm2)
54.25dm2
【解析】
根据三角形两条直角边的长度求出三角形的面积,再用三角形面积×2除以4.8求出三角形的斜边长度(即圆的直径),再根据阴影部分面积=半圆面积-三角形面积,代入数据即可解答。
8×6÷2
=48÷2
=24(dm2)
24×2÷4.8
=48÷4.8
=10(dm)
3.14×(10÷2)2÷2-24
=3.14×25÷2-24
=38.25-24
=15.25(dm2)
55.C
解析:面积6.88cm2;周长20.56cm
【解析】
从图中可以看出,2个圆可以组成一个半圆;阴影部分的面积=长方形的面积-圆的面积;阴影部分的周长=圆周长的一半+8;根据公式:S长方形=ab,S圆=πr2,C圆=2πr,分别代入数据计算即可。
阴影部分的面积:
8×4-3.14×42×
=32-3.14×8
=32-25.12
=6.88(cm2)
阴影部分的周长:
2×3.14×4×+8
=12.56+8
=20.56(cm)
56.C
解析:4cm;30.96cm2
【解析】
左图周长=直径是12cm的圆的一半+直径是8cm的圆的一半+(12-8)cm,其中圆的周长C=πd,代入数据计算即可。
右图阴影部分面积=边长是(2×6)cm正方形的面积-半径是6cm圆的面积,其中圆的面积S=πr2代入数据计算即可。
3.14×12÷2+3.14×8÷2+(12-8)
=18.84+12.56+4
=35.4(cm);
(6×2)×(6 ×2)-3.14×62
=12×12-113.04
=144-113.04
=30.96(cm2)
57.75平方厘米
【解析】
阴影部分面积=梯形面积-半圆面积,根据梯形面积公式:S=(a+b)h÷2,圆面积公式:S=πr²,代入公式即可求解。
梯形上底:5×2=10(厘米)
梯形面积:
(10+14)×5÷2
=24×5÷2
=120÷2
=60(平方厘米)
半圆面积:
3.14×5²÷2
=3.14×25÷2
=78.5÷2
=39.25(平方厘米)
阴影部分面积:60-39.25=20.75(平方厘米)
58.86cm2
【解析】
通过观察图形可知,阴影部分的面积=梯形的面积-等腰直角三角形的面积-半径为2cm的圆的面积;梯形面积公式S=(a+b)×h÷2,三角形的面积公式:S=ah÷2,圆的面积公式:S=πr2,把数据分别代入公式解答。
(2+4)×(4+2)÷2
=6×6÷2
=36÷2
=18(cm2)
4×4÷2
=16÷2
=8(cm2)
3.14×22×
=3.14×4×
=3.14(cm2)
18-8-3.14
=10-3.14
=6.86(cm2)
59.5平方厘米
【解析】
如图所示,根据圆的特征,①、②部分的面积完全相等,求阴影部分的面积就是求②、③部分的面积和,而②、③部分组合成一个上底为5厘米、下底为8厘米、高为5厘米的梯形。阴影部分面积等于梯形面积。
(5+8)×5÷2
=13×5÷2
=65÷2
=32.5(平方厘米)
60.86平方厘米
【解析】
阴影部分的面积=梯形面积-扇形面积,据此列式计算。
(2+4)×2÷2-3.14×2²÷4
=6×2÷2-3.14
=6-3.14
=2.86(平方厘米)
展开阅读全文