资源描述
圆锥曲线的综合问题(一)
最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.
1.直线与圆锥曲线的位置关系
判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程,
即消去y,得ax2+bx+c=0.
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;
Δ=0⇔直线与圆锥曲线C相切;
Δ<0⇔直线与圆锥曲线C相离.
(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.
2.圆锥曲线的弦长
设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则
|AB|=|x1-x2|
=·
=·|y1-y2|=·.
例题精讲(考点分析)
考点一 直线与圆锥曲线的位置关系
【例1】 在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
解 (1)椭圆C1的左焦点为F1(-1,0),∴c=1,
又点P(0,1)在曲线C1上,
∴+=1,得b=1,则a2=b2+c2=2,
所以椭圆C1的方程为+y2=1.
(2)由题意可知,直线l的斜率显然存在且不等于0,设直线l的方程为y=kx+m,
由消去y,得(1+2k2)x2+4kmx+2m2-2=0.
因为直线l与椭圆C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理得2k2-m2+1=0.①
由消去y,得k2x2+(2km-4)x+m2=0.
因为直线l与抛物线C2相切,
所以Δ2=(2km-4)2-4k2m2=0,整理得km=1.②
综合①②,解得或
所以直线l的方程为y=x+或y=-x-.
规律方法 研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x2项的系数是否为零的情况,以及判别式的应用.但对于选择、填空题要充分利用几何条件,用数形结合的方法求解.
【训练1】 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(-2,1),若直线l与轨迹C恰好有一个公共点,求实数k的取值范围.
解 (1)设点M(x,y),依题意|MF|=|x|+1,
∴=|x|+1,化简得y2=2(|x|+x),
故轨迹C的方程为y2=
(2)在点M的轨迹C中,记C1:y2=4x(x≥0);C2:y=0(x<0).
依题意,可设直线l的方程为y-1=k(x+2).
由方程组
可得ky2-4y+4(2k+1)=0.①
①当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=.
故此时直线l:y=1与轨迹C恰好有一个公共点.
②当k≠0时,方程①的Δ=-16(2k2+k-1)=-16(2k-1)(k+1),②
设直线l与x轴的交点为(x0,0),则
由y-1=k(x+2),令y=0,得x0=-.③
(ⅰ)若由②③解得k<-1,或k>.
所以当k<-1或k>时,直线l与曲线C1没有公共点,与曲线C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.
(ⅱ)若即解集为∅.
综上可知,当k<-1或k>或k=0时,直线l与轨迹C恰好有一个公共点.
考点二 弦长问题
【例2】 (2016·四川卷)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(1)求椭圆E的方程及点T的坐标;
(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.
(1)解 由已知,a=b,则椭圆E的方程为+=1.
由方程组得3x2-12x+(18-2b2)=0.①
方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,
此时方程①的解为x=2,所以椭圆E的方程为+=1.点T的坐标为(2,1).
(2)证明 由已知可设直线l′的方程为y=x+m(m≠0),
由方程组可得
所以P点坐标为.|PT|2=m2.
设点A,B的坐标分别为A(x1,y1),B(x2,y2).
由方程组可得3x2+4mx+(4m2-12)=0.②
方程②的判别式为Δ=16(9-2m2),
由Δ>0,解得-<m<.
由②得x1+x2=-,x1x2=.
所以|PA|=
=,同理|PB|=.
所以|PA|·|PB|=
=
=
=m2.
故存在常数λ=,使得|PT|2=λ|PA|·|PB|.
规律方法 有关圆锥曲线弦长问题的求解方法:
涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.
【训练2】 已知椭圆+=1(a>b>0)经过点(0,),离心率为,左、右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆的方程;
(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足=,求直线l的方程.
解 (1)由题设知解得a=2,b=,c=1,
∴椭圆的方程为+=1.
(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,
∴圆心到直线l的距离d=,由d<1,得|m|<.(*)
∴|CD|=2=2=.
设A(x1,y1),B(x2,y2),
由得x2-mx+m2-3=0,
由根与系数关系可得x1+x2=m,x1x2=m2-3.
∴|AB|=
=.
由=,得=1,解得m=±,满足(*).
∴直线l的方程为y=-x+或y=-x-.
考点三 中点弦问题
【例3】 (1)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
(2)已知双曲线x2-=1上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=18x上,则实数m的值为________.
解析 (1)因为直线AB过点F(3,0)和点(1,-1),
所以直线AB的方程为y=(x-3),代入椭圆方程+=1消去y,得x2-a2x+a2-a2b2=0,
所以AB的中点的横坐标为=1,即a2=2b2,
又a2=b2+c2,所以b=c=3,a=3,选D.
(2)设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),
则
由②-①得(x2-x1)(x2+x1)=(y2-y1)(y2+y1),
显然x1≠x2.∴·=3,即kMN·=3,
∵M,N关于直线y=x+m对称,∴kMN=-1,
∴y0=-3x0.又∵y0=x0+m,∴P,
代入抛物线方程得m2=18·,
解得m=0或-8,经检验都符合.
答案 (1)D (2)0或-8
规律方法 处理中点弦问题常用的求解方法
(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.
(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.
【训练3】 设抛物线过定点A(-1,0),且以直线x=1为准线.
(1)求抛物线顶点的轨迹C的方程;
(2)若直线l与轨迹C交于不同的两点M,N,且线段MN恰被直线x=-平分,设弦MN的垂直平分线的方程为y=kx+m,试求m的取值范围.
解 (1)设抛物线顶点为P(x,y),则焦点F(2x-1,y).
再根据抛物线的定义得|AF|=2,即(2x)2+y2=4,
所以轨迹C的方程为x2+=1.
(2)设弦MN的中点为P,M(xM,yM),N(xN,yN),则由点M,N为椭圆C上的点,
可知
两式相减,得
4(xM-xN)(xM+xN)+(yM-yN)(yM+yN)=0,
将xM+xN=2×=-1,yM+yN=2y0,
=-代入上式得k=-.
又点P在弦MN的垂直平分线上,
所以y0=-k+m.
所以m=y0+k=y0.
由点P在线段BB′上(B′,B为直线x=-与椭圆的交点,如图所示),所以yB′<y0<yB,也即-<y0<.
所以-<m<,且m≠0.
基础过关
1.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线( )
A.有且只有一条 B.有且只有两条
C.有且只有三条 D.有且只有四条
解析 ∵通径2p=2,又|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有两条.
答案 B
2.直线y=x+3与双曲线-=1(a>0,b>0)的交点个数是( )
A.1 B.2 C.1或2 D.0
解析 因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点.
答案 A
3.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点,设O为坐标原点,则·等于( )
A.-3 B.-
C.-或-3 D.±
解析 依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan 45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,∴·=-,同理,直线l经过椭圆的左焦点时,也可得·=-.
答案 B
4.抛物线y=x2到直线x-y-2=0的最短距离为( )
A. B.
C.2 D.
解析 设抛物线上一点的坐标为(x,y),则d===,∴x=时, dmin=.
答案 B
5.(2017·石家庄调研)椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为( )
A. B. C. D.
解析 设A(x1,y1),B(x2,y2),线段AB中点M(x0,y0),
由题设kOM==.
由得=-.
又=-1,==.
所以=.
答案 A
6.已知椭圆C:+=1(a>b>0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为________.
解析 由题意得解得∴椭圆C的方程为+=1.
答案 +=1
7.已知抛物线y=ax2(a>0)的焦点到准线的距离为2,则直线y=x+1截抛物线所得的弦长等于________.
解析 由题设知p==2,∴a=.
抛物线方程为y=x2,焦点为F(0,1),准线为y=-1.
联立消去x,
整理得y2-6y+1=0,∴y1+y2=6,∵直线过焦点F,
∴所得弦|AB|=|AF|+|BF|=y1+1+y2+1=8.
答案 8
8.过椭圆+=1内一点P(3,1),且被这点平分的弦所在直线的方程是________.
解析 设直线与椭圆交于A(x1,y1),B(x2,y2)两点,
由于A,B两点均在椭圆上,
故+=1,+=1,
两式相减得
+=0.
又∵P是A,B的中点,∴x1+x2=6,y1+y2=2,
∴kAB==-.
∴直线AB的方程为y-1=-(x-3).
即3x+4y-13=0.
答案 3x+4y-13=0
三、解答题
9.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.
解 (1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,
又2|AB|=|AF2|+|BF2|,得|AB|=a,
l的方程为y=x+c,其中c=.
设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=,x1x2=.
因为直线AB的斜率为1,所以|AB|=|x2-x1|=,即a=,故a2=2b2,
所以E的离心率e===.
(2)设AB的中点为N(x0,y0),由(1)知
x0===-,y0=x0+c=.
由|PA|=|PB|,得kPN=-1,即=-1,
得c=3,从而a=3,b=3.
故椭圆E的方程为+=1.
10.已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
解 (1)由题意得
解得b=,所以椭圆C的方程为+=1.
(2)由得(1+2k2)x2-4k2x+2k2-4=0.
设点M,N的坐标分别为(x1,y1),(x2,y2),
则y1=k(x1-1),y2=k(x2-1),
x1+x2=,x1x2=,
所以|MN|=
=
=
又因为点A(2,0)到直线y=k(x-1)的距离d=,
所以△AMN的面积为S=|MN|·d=,由=,解得k=±1.
能力提高
11.已知椭圆+=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是( )
A.1 B. C. D.
解析 由椭圆的方程,可知长半轴长为a=2,由椭圆的定义,可知|AF2|+|BF2|+|AB|=4a=8,
所以|AB|=8-(|AF2|+|BF2|)≥3.
由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即=3,可求得b2=3,即b=.
答案 D
12.(2016·四川卷)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值是( )
A. B. C. D.1
解析 如图所示,设P(x0,y0)(y0>0),则y=2px0,
即x0=.
设M(x′,y′),由=2,
得
解之得x′=,且y′=.
∴直线OM的斜率k===
又y0+≥2p,当且仅当y0=p时取等号.
∴k≤=,则k的最大值为.
答案 C
13.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|=________.
解析 直线AF的方程为y=-(x-2),联立得y=4,所以P(6,4).由抛物线的性质可知|PF|=6+2=8.
答案 8
14.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(1)求C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.
解 (1)设Q(x0,4),代入y2=2px得x0=.
所以|PQ|=,|QF|=+x0=+.
由题设得+=×,解得p=-2(舍去)或p=2.
所以C的方程为y2=4x.
(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.
设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.
故AB的中点为D(2m2+1,2m),
|AB|=|y1-y2|=4(m2+1).
又l′的斜率为-m,所以l′的方程为x=-y+2m2+3.
将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.
设M(x3,y3),N(x4,y4),则y3+y4=-,
y3y4=-4(2m2+3).
故MN的中点为E,
|MN|=|y3-y4|=.
由于MN垂直平分AB,故A,M,B,N四点在同一圆上等价于|AE|=|BE|=|MN|,
从而|AB|2+|DE|2=|MN|2,
即4(m2+1)2++
=.
化简得m2-1=0,
解得m=1或m=-1.
所求直线l的方程为x-y-1=0或x+y-1=0.
展开阅读全文