资源描述
六年级人教版上册数学计算题附答案
1.直接写得数。
2.直接写得数。
3.直接写出得数。
4.直接写出得数。
5.直接写得数。
0.9-0.86= 2.5×6= 0.35÷0.7= 1--=
×75% = 0.54÷0.6= 280×50= ++=
24÷= 201×4= 200×25%= -÷=
1.6×0.5= += ×= 5.3-7.5+4.7=
6.直接写出得数。
7.直接写得数。
1.69+0.1= 0.52=
8.直接写得数。
1.2+3.9= 2.5×3= 0.36÷0.6= 803-204≈
20×498≈
9.直接写出得数。
0.46+3.8= 0.125×2.4= 42÷0.7= 2.5×0÷3+3=
45%+1.51= 0.72×= 4.25×99+4.25=
10.直接写出得数。
11.直接写出得数。
15.1-3.5+6.5= 8×÷8×= 4203÷59≈ 0.42-0.32=
18××= 4÷-÷4= 3.6÷2×5= +0.2=
12.直接写得数。
∶
13.直接写得数。
19+24= 5-1.6= 3.8÷2= 1.5×4=
70-18= 0.25÷0.1= 3.5+0.7= 0.4×0.2=
5÷1000= 1-= ×= ÷=
14.直接写出得数。
0.1-0.01= 4.05÷0.5= 398+154= 3.5×16=
-= ÷= 3--= 0.25×5.3×4=
15.直接写出得数。
3.3-3.3×1= +×= =
0.25×0.8= 503-298≈ ÷0.125= 37.2÷0.4=
16.怎样简便怎样算。
17.计算下面各题,能简算的要简算。
18.脱式计算,能简算的要简算。
19.怎样简便就怎样算。
(1)(3049﹣29×75)÷9.2 (2) (3)
(4)17.81﹣4.35﹣2.65+2.19 (5) (6)36×2.5÷3.6×2.5
20.用你喜欢的方法计算。
(1) (2)
(3) (4)
21.选择合适的方法计算下面各题。
① ② ③
22.用简便方法计算下面各题。
23.用递等式计算(能简便的要用简便方法)。
24.递等式计算,能简便的要简便计算。
(1)12.44-2.44÷0.61 (2)
(3) (4)
25.计算下面各题,能简算的要简算(写出主要简算过程)。
12.5×8+75×0.8 4.72-1.16-2.84
(+-)÷
26.脱式计算(能简算的要简算)。
(1)270-49-156 (2)(5.9+1.65)÷0.25 (3)3.8×99+3.8
(4)4×0.37×25 (5)÷[×(-)] (6)÷7+×
27.计算下面各题,怎样简便就怎样算,要写出必要的计算过程。
① ②
③ ④
28.计算下面各题,能简算的要简算。
25××× 1.3×0.2+7.7×
13.92+2.81-9.92 ×[÷(+)]
29.脱式计算。
(1)××39 (2)1÷()
(3)×5+×5 (4)()×12
30.计算下面各题,能简算的要简算。
(1) (2) (3)
(4) (5) (6)
31.解方程(比例)。
(1) (2)
32.解方程。
-= 0.7(+0.9)=42 2(3-4)+(4-)=3
33.解方程。
① ②
34.解方程。
35.解方程。
(1) (2) (3)
36.解方程。
(1) (2) (3)
37.解方程。
38.解方程。
39.解方程。
x+x= x÷=18× 40%x+=
40.解方程。
41.解方程。
42.解方程。
43.解方程。
44.解方程。
45.解方程。
46.求下图中阴影部分的面积。
47.求阴影部分的面积。(单位:厘米)
48.求下图阴影部分的面积,单位:cm。
49.求如图中阴影部分的面积。
50.求阴影部分的面积。
51.计算下图的周长和面积(单位:m)
52.下图长方形的周长是30厘米,求阴影部分的面积。
53.如图,求下面图形中阴影部分的面积。
54.求下面阴影部分的面积。(单位:厘米)
55.求下面阴影部分的面积。(单位:cm)
56.求阴影部分的面积。(单位:cm)
57.计算下面图形中阴影部分的面积。
58.计算下图中阴影部分的面积。
59.求下图中阴影部分的面积。
60.求阴影部分的面积。
【参考答案】
1.;;1.2;;
;16;;15.7
【解析】
2.;;6.6;;
10;;0.54;3.6
【解析】
6.6
10 0.54 3.6
3.78;3;1;0;
11;180;0.3;1
【解析】
4.;1.3;15;5.5;
;18;68;
【解析】
5.04;15;0.5;0;
1;0.9;14000;;
18;804;50;;
0.8;;;2.5
【解析】
6.;;;;
;5;;
【解析】
7.79;;0.25;;
2.6;;99;
【解析】
8.1;7.5;0.6;600;
3;;2;10000
【解析】
9.26;0.3;60;3
1.96;0.4;425;
【解析】
10.115;15.01;7.2;7.8
2;6000;28.26;1
【解析】
11.1;;70;0.07;
4;;9;0.325
【解析】
12.;1;1.8;;5
;2.1;3;7.99;
【解析】
13.43;3.4;1.9;6
52;2.5;4.2;0.08
0.005;;;4
【解析】
14.09;8.1;552;56;
;;2;5.3
【解析】
15.;0;;;
0.2;200;5;93
【解析】
16.7;10;1925;
7;3;
【解析】
(1)运用除法的性质进行简算即可;
(2)把3.2拆成4×0.8,然后运用乘法交换律和乘法结合律进行简算即可;
(3)运用乘法分配律进行计算即可;
(4)同级运算按照从左到右的运算顺序进行计算即可;
(5)运用加法交换律和减法的性质进行计算即可;
(6)先算除法,然后运用减法的性质进行计算即可。
=437÷(12.5×0.8)
=437÷10
=43.7
=4×0.8×2.5×1.25
=(4×2.5)×(0.8×1.25)
=10×1
=10
=
=
=1925
=
=
=7
=
=
=3
=
=
=
=
17.;10;
63;
【解析】
(1)先算乘法,再算加法;
(2)根据乘法分配律(a+b)×c=a×c+b×c进行简算;
(3)先算括号里的除法,再算括号外的除法;
(4)从左往右依次进行计算。
(1)
(2)
(3)
(4)
18.1;
;
;17
【解析】
(1)根据加法交换律计算;
(2)先算除法、乘法,再算减法;
(3)把94写成,再根据乘法分配律计算;
(4)先算小括号里的减法,再算中括号里的除法,最后算中括号外的乘法;
(5)先把除法变为乘法,再根据乘法分配律计算;
(6)根据乘法分配律计算。
(1)
(2)
(3)
(4)
(5)
(6)
19.(1)95;(2);(3);
(4)13;(5);(6)62.5
【解析】
(1)根据运算顺序,先算小括号里面的乘法,再算小括号里面的减法,最后算括号外面的除法;
(2)根据运算顺序,先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的乘法;
(3)把式子转化为×+×,再根据乘法分配律进行计算;
(4)根据加法交换律和结合律以及减法的性质进行计算;
(5)根据运算顺序,先算小括号里面的加法,再算括号外面的除法,最后算括号外面的减法;
(6)根据乘法交换律和结合律进行计算。
(1)(3049﹣29×75)÷9.2
=(3049﹣2175)÷9.2
=874÷9.2
=95
(2)
=
=
=
(3)
=×+×
=×(+)
=×1
=
(4)17.81-4.35-2.65+2.19
=(17.81+2.19)-(4.35+2.65)
=20-7
=13
(5)
=÷-
=-
=
(6)36×2.5÷3.6×2.5
=(36÷3.6)×(2.5×2.5)
=10×6.25
=62.5
20.(1)576;(2)0
(3)20;(4)
【解析】
(1)根据运算顺序,先计算除法,再计算乘法;
(2)根据交换律和结合律把式子转化为,再进行计算;
(3)根据乘法分配律进行计算即可;
(4)把中括号里的算式根据减法的性质转化为,再进行计算。
(1)
(2)
(3)
(4)
21.①;②7.5;③
【解析】
①交换和的位置,利用加法交换律和加法结合律简便计算;
②转化成小数0.75,75%转化成小数0.75,再利用乘法分配律简便计算;
③87拆解成(86+1),再利用乘法分配律简便计算。
①
=
=1+
=
②
=
=
=
=7.5
③
=
=
=
=
22.;;27
【解析】
(1)交换和的位置,利用加法交换律和加法结合律简便计算;
(2)把99拆解成(100-1),再利用乘法分配律简便计算;
(3)把百分数62.5%转化成分数,除以变成乘40,再利用乘法分配律简便计算。
=
=
=
=
=
=
=
=
=
=25+32-30
=27
23.;8;;
10;
【解析】
,把除法改成乘法后再约分; 利用交换律和结合律进行简算;,先算小括号中的分数加法,再除除法;,改写成,再利用乘法分配律进行简算; ,先算小括号中的分数加法,再算中括号中的分数乘法,最后算中括号外的分数除法。
=
=
=(7.75+2.25)-
=10-2
=8
= 10÷
=10×
=
=
=
=
=10
=
=
=
24.(1)8.44;(2)37.5
(3);(4)
【解析】
(1)按照四则混合运算的顺序进行计算;
(2)把百分数、分数都化成小数,再利用乘法的分配律计算;
(3)先把括号里的分数通分,化成同分母分数,再计算;
(4)把4个相加写成4×,再根据乘法结合律解题;
(1)12.44-2.44÷0.61
=12.44-4
=8.44
(2)
=
=
=
=37.5
(3)
=
=
=
(4)
=
=
=
25.160;0.72;
12;
【解析】
(1)先根据积的变化规律,把75×0.8化为7.5×8,然后运用乘法分配律进行计算即可。
(2)运用减法的性质进行计算即可。
(3)把除以化为乘36,然后运用乘法分配律进行计算即可。
(4)先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的乘法即可。
12.5×8+75×0.8
=12.5×8+7.5×8
=(12.5+7.5)×8
=20×8
=160
4.72-1.16-2.84
=4.72-(1.16+2.84)
=4.72-4
=0.72
(+-)÷
=(+-)×36
=×36+×36-×36
=6+16-10
=22-10
=12
=
=
=
26.(1)65;(2)30.2;(3)380;
(4)37;(5);(6)
【解析】
(1)从左向右进行计算;
(2)先算小括号里的加法,再算括号外的除法;
(3)运用乘法分配律进行简算;
(4)运用乘法交换律进行简算;
(5)先算小括号里的减法,再算中括号里的乘法,最后算括号外的除法;
(6)把除以7化成乘,再运用乘法分配律进行简算。
(1)270-49-156
=221-156
=65
(2)(5.9+1.65)÷0.25
=7.55÷0.25
=30.2
(3)3.8×99+3.8
=3.8×(99+1)
=3.8×100
=380
(4)4×0.37×25
=4×25×0.37
=100×0.37
=37
(5)÷[×(-)]
=÷[×]
=÷
=
(6)÷7+×
=×+×
=(+)×
=1×
=
27.①;②4;
③25.6;④
【解析】
①先算小括号里面的加法,再算括号外面的除法;
②④根据乘法分配律进行计算;
③按照从左向右的顺序进行计算。
①
②
③
④
28.1;1.8
6.81;
【解析】
25×××,利用乘法交换结合律进行简算;
1.3×0.2+7.7×,利用乘法分配律进行简算;
13.92+2.81-9.92,交换加数和减数的位置再计算;
×[÷(+)],先算加法,再算除法,最后算乘法;
25×××
=(25×)×(×)
=10×
=1
1.3×0.2+7.7×
=(1.3+7.7)×0.2
=9×0.2
=1.8
13.92+2.81-9.92
=13.92-9.92+2.81
=4+2.81
=6.81
×[÷(+)]
=×[÷]
=×
=
29.(1)10.5;(2);
(3)5;(4)8
【解析】
(1)根据乘法交换律,先计算×39即可;
(2)根据运算顺序,先算小括号里面的除法,再算括号外面的除法;
(3)根据乘法分配律,把式子转化为(+)×5,再进行计算即可;
(4)根据乘法分配律,把式子转化为×12+×12-×12,再进行计算即可。
(1)××39
=×39×
=21×
=10.5
(2)1÷()
=1÷
=
(3)×5+×5
=(+)×5
=1×5
=5
(4)()×12
=×12+×12-×12
=6+4-2
=8
30.(1);(2);(3);
(4);(5)10;(6)18
【解析】
(1)从左往右依次计算;
(2)把除法化成乘法,把0.25化成,再运用乘法分配律的逆运算a×c+b×c=(a+b)×c进行简算;
(3)先算小括号里的减法,再算中括号里的乘法,最后算中括号外的除法;
(4)先算括号里的加法,再算括号外的除法;
(5)运用乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)进行简算;
(6)运用乘法分配律(a+b)×c=a×c+b×c进行简算。
(1)
(2)
(3)
(4)
(5)
(6)
31.(1)=;(2)=5
【解析】
(1)先化简方程,再根据等式的性质,方程两边同时除以即可;
(2)先根据比例的基本性质,把式子转化为,再根据等式的性质,方程两边同时除以即可。
(1)
解:
(2)
解:
32.=42;=59.1;=2
【解析】
根据等式的性质解方程。
(1)先化简方程,然后方程两边同时除以,求出方程的解;
(2)方程两边先同时除以0.7,再同时减去0.9,求出方程的解;
(3)先去括号,化简方程,然后方程两边先同时减去3,再同时加上4,最后同时除以2,求出方程的解。
(1)-=
解:=
÷=÷
=×
=42
(2)0.7(+0.9)=42
解:0.7(+0.9)÷0.7=42÷0.7
+0.9=60
+0.9-0.9=60-0.9
=59.1
(3)2(3-4)+(4-)=3
解:6-8+4-=3
5-4=3
5-4-3=3-3
2-4=0
2-4+4=0+4
2=4
2÷2=4÷2
=2
33.①;②
【解析】
①方程两边同时乘,两边再同时乘;
②先把方程左边化简为,两边再同时除以0.7。
①
解:
②
解:
34.;;
【解析】
(1)首先化简,然后根据等式的性质,两边同时乘即可。
(2)根据等式的性质,两边同时乘即可。
(3)首先根据等式的性质,两边同时减去,然后两边同时乘即可。
(1)
解:
(2)
解:
(3)
解:
35.(1);(2);(3)
【解析】
(1)根据等式的性质2,方程两边同时乘,两边再同时除以4;
(2)根据等式的性质1和2,方程两边同时减去的积,两边再同时乘;
(3)根据等式的性质2,方程两边同时乘,两边再同时乘3。
【解答】
(1)
解:
(2)
解:
(3)
解:
36.(1);(2);(3)
【解析】
(1)利用等式的性质2,方程两边同时除以;
(2)利用等式的性质2,方程两边先同时乘,再同时除以;
(3)先化简方程左边含有字母的式子,再利用等式的性质2,方程两边同时除以。
(1)
解:
(2)
解:
(3)
解:
37.;;
【解析】
根据等式的性质,方程两边同时加上1.8,再同时除以求解;
根据等式的性质,方程两边同时除以75%,再同时加上求解;
根据等式的性质,方程两边同时乘x,再同时除以求解;
解:
解:
解:
38.x=5;x=
【解析】
(1)利用等式的性质1,方程左右两边同时连续减去x和5,解出方程;
(2)先计算括号里减法,再利用等式的性质2,方程左右两边同时乘,解出方程;
解:2x+5-x-5=x+10-x-5
x=5
解:
x=
39.x=;x=;x=
【解析】
(1)先把方程左边的合并,再利用等式的性质2,两边同时除以,求出未知数;
(2)先计算方程右边的乘法,再利用等式的性质2,两边同时乘,求出未知数;
(3)方程左右两边同时减去,再同时除以0.4,求出未知数。
x+x=
解:x=
x=÷
x=
x÷=18×
解:x÷=12
x=12×
x=
40%x+=
解:40%x=-
0.4x=
x=÷0.4
x=
40.;;x=35
【解析】
解:
解:
解:
41.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;
方程中含有括号时,把括号看作一个整体,据此解方程即可。
(1)
解:
(2)
解:
(3)
解:
42.;;
【解析】
,先将左边进行合并,再根据等式的性质2解方程;
,先写成的形式,根据等式的性质1和2,两边同时-0.625,再同时÷2即可。
,根据比与除法的关系,写成,再根据等式的性质2,两边同时×即可。
解:
解:
解:
43.;;
【解析】
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此计算。
(1)
解:
(2)
解:
(3)
解:
44.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此解答。
(1)
解:
(2)
解:
(3)
解:
45.x=25.5;x=10;x=10.5
【解析】
(1)利用等式的性质1和性质2解方程;
(2)先把左边有未知数的合并,再利用等式的性质2解方程;
(3)利用等式的性质1和性质2解方程;
(1)
解:
解:
解:
46.5cm2
【解析】
如图所示,①和②的面积相等,则阴影部分是一个梯形,梯形的面积=(上底+下底)×高÷2,把题中数据代入公式计算即可。
(6-3+6)×3÷2
=9×3÷2
=27÷2
=13.5(cm2)
所以,阴影部分的面积是13.5cm2。
47.48平方厘米
【解析】
把梯形外的阴影部分通过平移,与梯形内的空白处重合;阴影部分转化为梯形面积;根据梯形的面积公式:面积=(上底+下底)×高÷2;上底=6厘米;下底=10厘米;高=6厘米;代入数据;即可解答。
(6+10)×6÷2
=16×6÷2
=96÷2
=48(平方厘米)
48.A
解析:5cm2
【解析】
如下图所示,添加一条辅助线,左边阴影部分的面积等于A部分的面积,而A部分和另一块阴影组成一个梯形,则原来两块阴影部分的面积之和等于梯形的面积。梯形的面积=(上底+下底)×高÷2,据此代入数据计算。
(12-5+12)×5÷2
=19×5÷2
=47.5(cm2)
49.88cm2
【解析】
阴影部分的面积=梯形面积-半圆面积,根据梯形面积S=(a+b)h÷2,半圆面积S=πr2÷2,分别代入数据计算即可。
梯形的面积:
(4×2+16)×4÷2
=(8+16)×4÷2
=24×4÷2
=96÷2
=48(cm2)
半圆的面积:
3.14×42÷2
=3.14×16÷2
=50.24÷2
=25.12(cm2)
阴影部分的面积:
48-25.12=22.88(cm2)
50.86cm2
【解析】
四个扇形拼成一个圆,所以阴影部分的面积等于正方形的面积减去圆的面积,根据圆的面积公式:,正方形的面积公式:,把数据代入公式解答。
(cm)
(cm2)
所以阴影部分的面积是86cm2。
51.C
解析:8m;1314m2
【解析】
组合图形的周长等于一个圆的周长加上长方形的两条长,利用圆的周长公式:C=,再加2个50m即可得解;组合图形的面积等于一个圆的面积加上长方形的面积,利用圆的面积公式:S=和长方形的面积公式:S=ab,分别计算出圆的面积和长方形的面积,再把两个图形的面积相加即可得解。
3.14×20+50×2
=62.8+100
=162.8(m)
3.14×(20÷2)2+50×20
=3.14×102+1000
=3.14×100+1000
=314+1000
=1314(m2)
52.61平方厘米
【解析】
长方形的宽等于圆的直径,长方形的长等于圆的直径加上圆的半径,根据长方形的周长公式可知:(长+宽)×2=30,相当于(3r+2r)×2=30,所以可计算出圆的半径。再利用长方形的面积公式:S=ab计算出长方形的面积,利用圆的面积公式:S=计算出1个圆加半个圆的面积,用长方形的面积减去1个半圆的面积,即是阴影部分的面积。
半径:(厘米)
长方形面积:
=9×6
=54(平方厘米)
圆面积:
=3.14×9+3.14×9÷2
=28.26+14.13
=42.39(平方厘米)
阴影部分面积:(平方厘米)
53.5平方米
【解析】
由图可知,小圆的直径为大圆的半径,阴影部分的面积=大半圆的面积-空白部分小圆的面积,据此解答。
3.14×(20÷2)2÷2-3.14×(20÷2÷2)2
=3.14×102÷2-3.14×52
=3.14×100÷2-3.14×25
=3.14×(100÷2-25)
=3.14×(50-25)
=3.14×25
=78.5(平方米)
54.72平方厘米
【解析】
观察图形可知,阴影部分的面积=梯形的面积-半圆的面积。梯形的面积=(上底+下底)×高÷2,半圆的面积=πr2÷2,据此代入数据计算。
(4+6)×2÷2-22×3.14÷2
=10-6.28
=3.72(平方厘米)
55.48cm2
【解析】
如下图,把左边阴影部分平移到右边空白部分,如箭头所示,这样阴影部分组成一个梯形,根据梯形的面积=(上底+下底)×高÷2,代入数据计算即可。
(6+10)×6÷2
=16×6÷2
=96÷2
=48(cm2)
56.5cm2
【解析】
阴影部分的面积可以用梯形的面积减去扇形的面积,梯形的上底是10cm,下底是20cm,高是10cm,扇形的半径是10cm,圆心角是90°,分别代入公式求解即可。
(cm2)
57.87m2
【解析】
看图,整个大图形是梯形,以梯形上底为直径,挖出了一个半圆,剩下的部分是阴影部分。所以,阴影部分的面积=梯形面积-半圆面积。据此解题。
(6+10)×(6÷2)÷2-3.14×(6÷2)2÷2
=16×3÷2-3.14×9÷2
=24-14.13
=9.87(m2)
所以,阴影部分的面积是9.87m2。
58.74cm2
【解析】
观察图形可知,阴影部分的面积=梯形的面积-×直径是12cm整圆的面积,据此解答即可。
[(12÷2+12)×(12÷2)÷2]-×3.14×(12÷2)2
=[18×6÷2]-×113.04
=54-28.26
=25.74(cm2)
59.74cm2
【解析】
先利用梯形的面积公式:(上底+下底)×高÷2,计算出梯形的面积,再利用圆的面积公式:,再乘,计算出个圆的面积,用梯形的面积减去个圆的面积,即是图中阴影部分的面积。
(6+12)×6÷2-3.14×6×6÷4
=18×6÷2-18.84×6÷4
=54-28.26
=25.74(cm2)
60.86平方厘米
【解析】
阴影部分的面积=梯形面积-扇形面积,据此列式计算。
(2+4)×2÷2-3.14×2²÷4
=6×2÷2-3.14
=6-3.14
=2.86(平方厘米)
展开阅读全文