收藏 分销(赏)

七年级下册枣庄数学期末试卷测试与练习(word解析版).doc

上传人:a199****6536 文档编号:5548762 上传时间:2024-11-13 格式:DOC 页数:24 大小:512.54KB
下载 相关 举报
七年级下册枣庄数学期末试卷测试与练习(word解析版).doc_第1页
第1页 / 共24页
七年级下册枣庄数学期末试卷测试与练习(word解析版).doc_第2页
第2页 / 共24页
七年级下册枣庄数学期末试卷测试与练习(word解析版).doc_第3页
第3页 / 共24页
七年级下册枣庄数学期末试卷测试与练习(word解析版).doc_第4页
第4页 / 共24页
七年级下册枣庄数学期末试卷测试与练习(word解析版).doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、七年级下册枣庄数学期末试卷测试与练习(word解析版)一、选择题1如图,下列说法不正确的是( )A1与3是对顶角B2与6是同位角C3与4是内错角D3与5是同旁内角2下列现象中是平移的是( )A翻开书中的每一页纸张B飞碟的快速转动C将一张纸沿它的中线折叠D电梯的上下移动3点(4,2)所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列命题中是假命题的是( )A对顶角相等B两直线平行,同位角互补C在同一平面内,经过一点有且只有一条直线与已知直线垂直D平行于同一直线的两条直线平行5将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )ABCD6如图,数轴上的点A所表示的

2、数为x,则x210的立方根为()A10B10C2D27如图,直线AB,CD被BC所截,若ABCD,150,240,则3等于( )A80B70C90D1008如图,在平面直角坐标系中,根据这个规律,探究可得点的坐标是( )ABCD二、填空题9计算_10平面直角坐标系中,点关于轴的对称点是_11如图,在ABC中,ACB90,AD是ABC的角平分线,BC10cm,BD:DC3:2,则点D到AB的距离为_12如图,平分,交于,若,则的度数是_13把一张对边互相平行的纸条折成如图所示,是折痕,若,则_14定义一种新运算“”规则如下:对于两个有理数,若,则_15若P(2a,2a+3)到两坐标轴的距离相等,

3、则点P的坐标是_16在平面直角坐标系中,已知点A(4,0),B(0,3),对AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4),那么第(2013)个三角形的直角顶点坐标是_三、解答题17计算题(1). (2);18求下列各式中的值:(1); (2)19如图试问、有什么关系?解:,理由如下:过点作则_( )又,_( )_( )( )即_20如图,在平面直角坐标系中,ABC的顶点都在网格点上,每个小正方形边长为1个单位长度(1)将ABC向右平移6个单位,再向下平移3个单位得到A1B1C1,画出图形,并写出各顶点坐标;(2)求ABC的面积21阅读下面的文字,解答问题,例如:,

4、即23,的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 (2)已知:5小数部分是m,6+小数部分是n,且(x+1)2m+n,请求出满足条件的x的值二十二、解答题22如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?二十三、解答题23已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=9

5、0时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)24已知,交AC于点E,交AB于点F(1)如图1,若点D在边BC上,补全图形;求证:(2)点G是线段AC上的一点,连接FG,DG若点G是线段AE的中点,请你在图2中补全图形,判断,之间的数量关系,并证明;若点G是线段EC上的一点,请你直接写出,之间的数量关系25阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是

6、另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的

7、平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数26已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的

8、值是否变化,若变化,请说明理由;若不变化,请直接写出比值【参考答案】一、选择题1B解析:B【分析】根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可【详解】解答:解:A、

9、1与3是对顶角,故原题说法正确,不符合题意;B、2与6不是同位角,故原题说法错误,符合题意;C、3与4是内错角,故原题说法正确,不符合题意;D、3与5是同旁内角,故原题说法正确,不符合题意;故选:B【点睛】此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义2D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中

10、的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象故选:D【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选3B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答【详解】解:点(-4,2)所在的象限是第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据对顶角的性质、

11、平行线的性质、平行公理判断即可【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,故原命题是假命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D、平行于同一直线的两条直线互相平行,是真命题,故选:B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5B【分析】根据平行可得出DAB+CBA=180,再根据折叠和平角定义可求出【详解】解:由翻折可知,DAE=2,CBF=2,,DAB+CBA=180,DAE+CBF=180,即,故选:B【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟

12、练运用平行线的性质进行推理计算6D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7C【分析】根据ABCD判断出1=C=50,根据3是ECD的外角,判断出3=C+2,从而求出3的度数【详解】解:ABCD,1=C=50,3是ECD的外角,3=C+2,3=50+40=90故选:C【点睛】本题考查了平行线的性质和三角形的外角性

13、质,灵活运用是解题的关键8B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、2、3、解析:B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,且20214=5051,点的坐标是(2021,2),故选:B【点睛】本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键二、填空题911【分析】直接利用算术

14、平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键10【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:【分析】根据平面直角坐标系中,关于坐标轴对称的点的

15、坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;114cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm解析:4cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm1

16、225【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行解析:【分析】需理清

17、楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想14【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得解析:【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数

18、运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.16(8052,0)【分析

19、】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解解析:(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】解:点A(4,0),B(0,3),OA4,OB3,AB5,第(3)个三角形的直角顶点的坐标是;观察图形不难发现,每3个三角形为一个循环组依次循环,一次循环横坐标增加12,20133671第(2013)个三角形是第671组的第三个直角三角形

20、,其直角顶点与第671组的第三个直角三角形顶点重合,第(2013)个三角形的直角顶点的坐标是即故答案为:【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键三、解答题17(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2

21、)原式=.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.18(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案【详解】解:(1),;(2),解析:(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案【详解】解:(1),;(2),;【点睛】本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题191;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2

22、;两直线平行,内错角相等;等量代换;BCE【分析】过点作,则1,同理可以得到2,由此即可求解【详解】解:,解析:1;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2;两直线平行,内错角相等;等量代换;BCE【分析】过点作,则1,同理可以得到2,由此即可求解【详解】解:,理由如下:过点作,则1(两直线平行,内错角相等),又,DECF(平行于同一条直线的两直线平行),2(两直线平行,内错角相等)(等量代换)即BCE,故答案为:1;两直线平行,内错角相等;DECF;平行于同一条直线的两直线平行;2;两直线平行,内错角相等;等量代换;BCE【点睛】本题主要考查了平行线的性质与判定,解

23、题的关键在于能够熟练掌握相关知识进行求解20(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位置写出各点坐标即可;(2)根据图形的面积的和差求出ABC的面积即可【详解】解:如图所示,、;【点睛】本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找

24、出对应点的位置是解题的关键21(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整解析:(1)4 ,;(2)x=0或-2【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出mn的值,可求满足条件的x的值【详解】(1)45,的整数部分是4,小数部分是4故答案为:4;(2)5小数部分是m,051,6+小数部分是nm=5-, n=6+-10=-4 m+n=1 (x+1)21x+1=1解得:x=0或-2【点睛】此题主要考查了估算无理数的大小,正确得出

25、各数的小数部分是解题关键二十二、解答题22(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且

26、面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条解析:(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可

27、解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=9

28、0;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=180,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键24(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1

29、)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,解析:(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,A+AFD=180,进而得出EDF=A;(2)过G作GHAB,依据平行线的性质,即可得到AFG+EDG=FGH+DGH=DGF;过G作GHAB,依据平行线的性质,即可得到AFG-EDG=FGH-DGH=DGF【详解】解:(1)如图,DEAB,DFAC,EDF+AFD=180,A+AFD=180,EDF=A;(2)AFG+EDG=DGF如图2所示,过G作GHAB,A

30、BDE,GHDE,AFG=FGH,EDG=DGH,AFG+EDG=FGH+DGH=DGF;AFG-EDG=DGF如图所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG-EDG=FGH-DGH=DGF【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等正确的作出辅助线是解题的关键25(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根

31、据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当1801087

32、2的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBC

33、DB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键26(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论

34、【详解】解:(1)直线l2l1,l3l1,l2l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)CE平分BCD,BCEDCEBCD,BCD70,DCE35,l2l3,CEDDCE35,l2l1,CAD90,ADC907020;故答案为:35,20;(3)CF平分BCD,BCFDCF,l2l1,CAD90,BCF+AGC90,CDBD,DCF+CFD90,AGCCFD,AGCDGF,DGFDFG;(4)N:BCD的值不会变化,等于;理由如下:l2l3,BEDEBH,DBEDEB,DBEEBH,DBH2DBE,BCD+BDCDBH,BCD+BDC2DBE,N+BDNDBE,BCD+BDC2N+2BDN,DN平分BDC,BDC2BDN,BCD2N,N:BCD【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服