1、2022年人教版七7年级下册数学期末复习题含解析一、选择题1下列四幅图中,和是同位角的是( )A(1)(2)B(3)(4)C(1)(2)(3)D(1)(3)(4)2下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )ABCD3已知点在轴的负半轴上,则点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中假命题有( )两条直线被第三条直线所截,同位角相等如果两条直线都与第三条直线平行,那么这两条直线也互相平行点到直线的垂线段叫做点到直线的距离过一点有且只有一条直线与已知直线平行若两条直线都与第三条直线垂直,则这两条直线互相平行A5个B4个C3个D2个5如图,点在延长线上,、交于
2、,且,比的余角小,为线段上一动点,为上一点,且满足,为的平分线则下列结论:;平分;的角度为定值其中正确结论的个数有( )A1个B2个C3个D4个6下列说法中,正确的是()A(2)3的立方根是2B0.4的算术平方根是0.2C的立方根是4D16的平方根是47如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则1的度数为( )A45B125C55D358如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90移动2个单位长度到达点P2;然后逆时针转向90,移动3个单位长度到达点P3;然后逆时针转向90,移动4个单位长度
3、到达点P4;,如此继续转向移动下去设点Pn(xn,yn),n1,2,3,则x1+x2+x3+x2021()A1B1010C1011D2021九、填空题9_十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题12如图,己知ABCDOE平分AOC,OEOF,C50,则AOF的度数为_十三、填空题13如图,有一条直的宽纸带,按图折叠,则的度数等于_十四、填空题14对于任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_十五、填空题15已知点M在y轴上,纵坐标为4,
4、点P(6,4),则OMP的面积是_十六、填空题16在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5按此方法进行下去,则A2021点坐标为_十七、解答题17计算:(1)|+2;(2)十八、解答题18求下列各式中x的值(1)4x264;(2)3(x1)3+240十九、解答题19如图,已知EFAD,试说明请将下面的说明过程填写完整解:EFAD,已知_又,已知,_,_二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到
5、原点的距离是_;(2)将点向轴的负方向平移个单位,则它与点_重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离是多少?二十一、解答题21计算:(1); (2)12+(2)3;(3)已知实数a、b满足+|b1|=0,求a2017+b2018的值(4)已知+1的整数部分为a,1的小数部分为b,求2a+3b的值二十二、解答题22学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由(取3)二十三、解答题23如图,将一张长方形纸片沿对折,使落在的位
6、置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数二十四、解答题24已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代
7、数式表示)二十五、解答题25如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)【参考答案】一、选择题1A解析:A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角【详解】解:根据同位角的定义,图(1
8、)、(2)中,1和2是同位角;图(3)1、2的两边都不在同一条直线上,不是同位角;图(4)1、2不在被截线同侧,不是同位角故选:A【点睛】本题考查同位角的概念,是需要熟记的内容即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角2D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等【详解】解:A、B、C都不是由平移得到的,D是由平移得到的故选:D【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等【详解】解:A、B、C都不是由平移得到的,D是由平移得到的故
9、选:D【点睛】本题考查平移的基本性质是:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等3A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答【详解】点P(0,a)在y轴的负半轴上,点M(-a,-a+5)在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键4B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可【详解】解:两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;点到直线的垂线段叫
10、做点到直线的距离,错误,应该是垂线段的长度;过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内 故选B【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义5D【分析】由可得AEBD,进而得到,结合即可得到结论;由得出,结合即可得解;由平行线的性质和内角和定理判断即可;根据角平分线的性质求解即可;【详解】,AEBD,结论正确;,平分,结论正确;,比的余角小,结论正确;为的平分线,结论正确;故正确的结论是;故答案选D【点睛】本题主要考查了平行线的判定与性质、余角和补角的
11、性质,准确分析计算是解题的关键6A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案【详解】解:A(2)3的立方根是2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;C. 的立方根是2,故本选项不符合题意;D.16的平方根是4,故本选项不符合题意;故选:A【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键
12、是求出3的度数和得出1=3,题目比较典型,难度适中8A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、解析:A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、的值分别为:1,1,3,3,;,故选:A【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律九、填空题913【分析】根据求解即可【详解】解:,故答案为:13【点睛
13、】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键解析:13【分析】根据求解即可【详解】解:,故答案为:13【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题
14、考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和
15、角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12115【分析】要求AOF的度数,结合已知条件只需要求出AOE的度数,根据角平分线的定义可以得到AOE=AOC,再利用平行线的性质得到C=AOC即可求解.【详解】解:ABCD解析:115【分析】要求AOF的度数,结合已知条件只需要求出AOE的度数,根据角平分线的定义可以得到AOE=AOC,再利用平行线的性质得到C=AOC即可求解.【详解】解:ABCD,C=50,C=AOC=50,OE平分AOC,25,OEOF,EOF=90,AOF=AOE+EOF=115,故答案为:115.【点睛】本题主要考查了
16、平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题1375【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为解析:75【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为折痕,2+CBF=180,即2+30=180,解得=75故答案为:75【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键
17、十四、填空题14-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.十五、填空题15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解
18、:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键十六、填空题16(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1解析:(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1,0),A5(3,2),A9(5,4),A13(7,6),可以看
19、出,3,5,7,各个点的纵坐标等于横坐标的相反数+1,故1011,A2021(1011,1010),故答案为:(1011,1010)【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型十七、解答题17(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算解析:(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运
20、算法则十八、解答题18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)解析:(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解十九、解答题19;两直线平行,同位角相等;等量代换;内错角相等,两直
21、线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可【详解】解:EFAD,(已知)(两直线平行,同位角相等)解析:;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可【详解】解:EFAD,(已知)(两直线平行,同位角相等)又,(已知),(等量代换),(内错角相等,两直线平行)(两直线平行,同旁内角互补)故答案为: ;两直线平行,同位角相等 ;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键二十、解答题20(1)3;(2)C;(3
22、)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y
23、轴平行;(4)E(5,7),点E到x轴的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式本题是综合题型,但难度不大二十一、解答题21(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平方根的非负性质得出a
24、,b的值,进而得出答案;直接利用2的范围进而得出a,b的值,即可得出答案【详解】解:;,;的整数部分为a,的小数部分为b,【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键二十二、解答题22选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大
25、小得到答案【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x2=81,解得:x=9,x0,x=9,正方形的周长为49=36,设建成圆形时圆的半径为r米,由题意得:r2=81解得:,r0,圆的周长=,建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键二十三、解答题23(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行
26、线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键二十四、解答题24(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得
27、到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意
28、画出图形是解题关键二十五、解答题25(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.