资源描述
一、解答题
1.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.
(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.
(2)请用含的式子表示,并直接写出的取值范围.
2.如图1,//,点、分别在、上,点在直线、之间,且.
(1)求的值;
(2)如图2,直线分别交、的角平分线于点、,直接写出的值;
(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.
3.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
4.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
5.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.
(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系: ;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
6.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
7.阅读理解:
计算×﹣×时,若把与分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
解:设为A,为B,
则原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.请用上面方法计算:
①×-×
②-.
8.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:
(1)由,因为,请确定是______位数;
(2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________;
(3)已知和分别是两个数的立方,仿照上面的计算过程,请计算:;.
9.观察下列各式,并用所得出的规律解决问题:
(1),,,……
,,,……
由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.
(2)已知,,则_____;______.
(3),,,……
小数点的变化规律是_______________________.
(4)已知,,则______.
10.阅读下面的文字,解答问题.
对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差.
例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.
(1)仿照以上方法计算:[]= {5﹣}= ;
(2)若[]=1,写出所有满足题意的整数x的值: .
(3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0= ,n= .
11.阅读下列材料:小明为了计算的值,采用以下方法:
设 ①
则 ②
②-①得,
请仿照小明的方法解决以下问题:
(1)________;
(2)_________;
(3)求的和(,是正整数,请写出计算过程).
12.若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)=5536﹣6553=-1017.
(1)P(2215)= ,P(6655)= .
(2)求证:任意一个“前介数”t,P(t)一定能被9整除.
(3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值.
13.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(﹣3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点O出发,沿OB→BC→CD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;
①当t为多少秒时,点P的横坐标与纵坐标互为相反数;
②当t为多少秒时,三角形PEA的面积为2,求此时P的坐标
14.已知,定点,分别在直线,上,在平行线,之间有一动点.
(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.
(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明
(3)当满足,且,分别平分和,
①若,则__________°.
②猜想与的数量关系.(直接写出结论)
15.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,,,其中a、b满足关系式:.
______,______,的面积为______;
如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于
如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由.
16.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”.
(1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.
(2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值.
17.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为.
(1)请直接写点、、的坐标;
(2)求四边形与四边形重叠部分的面积;
(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由.
18.如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点A与点B的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点A与点B的“非常距离”为|y1﹣y2|.
(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为 ;
(2)已知点C(﹣1,2),点D为y轴上的一个动点.①若点C与点D的“非常距离”为2,求点D的坐标;②直接写出点C与点D的“非常距离”的最小值.
19.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?
20.某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元.
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.
21.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.
(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.
(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.
(3)若AM=BN,MN=BM,求m和n值.
22.已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,,,轴,且、满足.
(1)则______;______;______;
(2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由;
(3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是______.
23.如果3个数位相同的自然数m,n,k满足:m+n=k,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.
(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;
(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s.
24.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:
(1)求A、B两点的坐标;
(2)设三角形ABC面积为,若4<≤7,求m的取值范围;
(3)设,请给出,满足的数量关系式,并说明理由.
25.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得.
解决下列问题:
(1)请你写一个双连不等式并将它转化为不等式组;
(2)利用不等式的性质解双连不等式;
(3)已知,求的整数值.
26.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.
材料2:求方程的正整数解.
解:由已知得:……①
设(为整数),则……②
把②代入①得:.
所以方程组的解为 ,
根据题意得:.
解不等式组得0<<.所以的整数解是1,2,3.
所以方程的正整数解是:,,.
根据以上材料回答下列问题:
(1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号);
(2)仿照上面的方法,求方程的正整数解;
(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)
27.阅读理解:
例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.
例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.
参考阅读材料,解答下列问题:
(1)方程|x﹣2|=3的解为 ;
(2)解不等式:|x﹣2|≤1.
(3)解不等式:|x﹣4|+|x+2|>8.
(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.
28.定义:如果一个两位数a的十位数字为m,个位数字为n,且、、,那么这个两位数叫做“互异数”.
将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为.
例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以.
根据以上定义,解答下列问题:
(1)填空:①下列两位数:20,21,22中,“互异数”为________;
②计算:________;________;(m、n分别为一个两位数的十位数字与个位数字)
(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;
(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值________;
(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围________.
29.如图,在平面直角坐标系中,已知,,,,满足.平移线段得到线段,使点与点对应,点与点对应,连接,.
(1)求,的值,并直接写出点的坐标;
(2)点在射线(不与点,重合)上,连接,.
①若三角形的面积是三角形的面积的2倍,求点的坐标;
②设,,.求,,满足的关系式.
30.阅读以下内容:
已知有理数m,n满足m+n=3,且求k的值.
三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于m,n的方程组,再求k的值;
乙同学:将原方程组中的两个方程相加,再求k的值;
丙同学:先解方程组,再求k的值.
(1)试选择其中一名同学的思路,解答此题;
(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)①1;②;(2).
【分析】
(1)①②根据点F的坐标构建方程即可解决问题.
(2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<时,重叠部分是矩形AEHN.④如图4中,当-≤m<0时,重叠部分是正方形EFGH.分别求解即可解决问题.
【详解】
解:(1)①当点F与点B重合时,由题意3m=3,
∴m=1.
②当点F与点A重合时,由题意3m=-1,
∴m=,
故答案为1,.
(2)①当时,如图1.
,.
.
②当时,如图2.
.
.
③当时,如图3.
,.
④当时,如图4.
.
.
综上,
.
【点睛】
本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
2.(1) ;(2)的值为40°;(3).
【分析】
(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;
(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;
(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得
即可得关于n的方程,计算可求解n值.
【详解】
证明:过点O作OG∥AB,
∵AB∥CD,
∴AB∥OG∥CD,
∴
∴
即
∵∠EOF=100°,
∴∠;
(2)解:过点M作MK∥AB,过点N作NH∥CD,
∵EM平分∠BEO,FN平分∠CFO,
设
∵
∴
∴x-y=40°,
∵MK∥AB,NH∥CD,AB∥CD,
∴AB∥MK∥NH∥CD,
∴
∴
=x-y
=40°,
的值为40°;
(3)如图,设直线FK与EG交于点H,FK与AB交于点K,
∵AB∥CD,
∴
∵
∴
∵
∴
即
∵FK在∠DFO内,
∴ ,
∵
∴
∴
即
∴
解得 .
经检验,符合题意,
故答案为:.
【点睛】
本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.
3.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】
(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】
考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
4.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
5.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.
【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).
又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP平分∠AMH,
∴∠PMH=∠AMH=(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.
∵∠ENH=∠HND.
∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.
∴∠ENQ+(HND+∠BMH)=130°.
∴∠ENQ+∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
6.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EH∥AB,如图1,
∴∠BME=∠MEH,
∵AB∥CD,
∴HE∥CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN﹣∠END.
如图2,过F作FH∥AB,
∴∠BMF=∠MFK,
∵AB∥CD,
∴FH∥CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQ∥NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.
7.(1);(2).
【分析】
①根据发现的规律得出结果即可;
②根据发现的规律将所求式子变形,约分即可得到结果.
【详解】
(1)设为A,为B,
原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;
(2)设为A,为B,
原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.
【点睛】
考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
8.(1)两;(2)2,3;(3)24,﹣48;
【分析】
(1)由题意可得,进而可得答案;
(2)由只有个位数是2的数的立方的个位数是8,可确定的个位上的数,由可得27<32<64,进而可确定,于是可确定的十位上的数,进而可得答案;
(3)仿照(1)(2)两小题中的方法解答即可.
【详解】
解:(1)因为,所以,
所以是一个两位数;
故答案为:两;
(2)因为只有个位数是2的数的立方的个位数是8,
所以的个位上的数是2,
划去32768后面的三位数768得到32,因为,27<32<64,
所以,
所以的十位上的数是3;
故答案为:2,3;
(3)由103=1000,1003=1000000,1000<13824<1000000,
∴10<<100,
∴是两位数;
∵只有个位数是4的数的立方的个位数是4,
∴的个位上的数是4,
划去13824后面的三位数824得到13,
∵8<13<27,∴20<<30.
∴=24;
由103=1000,1003=1000000,1000<110592<1000000,
∴10<<100,
∴是两位数;
∵只有个位数是8的数的立方的个位数是2,
∴的个位上的数是8,
划去110592后面的三位数592得到110,
∵64<110<125,
∴40<<50,
∴;
∴=﹣48.
【点睛】
本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.
9.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01
【分析】
(1)观察已知等式,得到一般性规律,写出即可;
(2)利用得出的规律计算即可得到结果;
(3)归纳总结得到规律,写出即可;
(4)利用得出的规律计算即可得到结果.
【详解】
解:(1),,,……
,,,……
由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.
故答案为:两;右;一;
(2)已知,,则;;
故答案为:12.25;0.3873;
(3),,,……
小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;
(4)∵,,
∴,
∴,
∴y=-0.01.
【点睛】
此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.
10.(1)2;3﹣;(2)1、2、3;(3)256,4
【分析】
(1)依照定义进行计算即可;
(2)由题可知,,则可得满足题意的整数的的值为1、2、3;
(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算.
【详解】
解:(1)由定义可得,,,
.
故答案为:2;.
(2),
,即,
整数的值为1、2、3.
故答案为:1、2、3.
(3),即,
可设,且是自然数,
是符合条件的所有数中的最大数,
,
,
,
,
,
即.
故答案为:256,4.
【点睛】
本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.
11.(1);(2);(3)
【分析】
(1)设式子等于s,将方程两边都乘以2后进行计算即可;
(2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案;
(3)设式子等于s,将方程两边都乘以a后进行计算即可.
【详解】
(1)设s=①,
∴2s=②,
②-①得:s=,
故答案为:;
(2)设s=①,
∴3s=②,
②-①得:2s=,
∴,
故答案为: ;
(3)设s=①,
∴as=②,
②-①得:(a-1)s=,
∴s=.
【点睛】
此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.
12.(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36.
【分析】
(1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可;
(2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除;
(3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解.
【详解】
(1)解:2215是“前介数”,其对应的“中介数”是5221,
∴P(2215)=2215-5221=-3006;
6655是“前介数”,其对应的“中介数”是5665,
∴P(6655)=6655-5665=990;
故答案为:-3006,990;
(2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c,
∴,
又对应的“中介数”是,
∴P(t)=
,
∵a、b、c均不为0的整数,
∴为整数,
∴P(t)一定能被9整除;
(3)证明:设“前介数”为且即1a、b,a、b均为不为0的整数,
∴,
∵能被6整除,
∴能被2整除,也能被3整除,
∴为偶数,且能被3整除,
又1,
∴b只能取2,4,6,8中的其中一个数,
又对应的“中介数”是,
且该“中介数”能被2整除,
∴为偶数,
又1,
∴a只能取2,4,6,8中的其中一个数,
∴P(t)=
,
要求P(t)的最大值,即要尽量的大,要尽量的小,
①的最大值为8,的最小值为2,但此时,
且14不能被3整除,不符合题意,舍去;
②的最大值为6,的最小值仍为2,但此时,能被3整除,
且P(t)=2262-2226=36;
③的最大值仍为8,的最小值为4,但此时,
且16不能被3整除,不符合题意,舍去;
其他情况,减少,增大,则P(t)减少,
∴满足条件的P(t)的最大值是P(2262)=36.
【点睛】
本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法.
13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)
【分析】
(1)根据BC=AE=3,OA=1,推
展开阅读全文