1、八年级数学期末试题 姓名:本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至4页,第卷5至8页。共150分。考试时间120分钟。注意事项:1、答第卷前,考生务必将自己的姓名、准考证号、考试科目等用2B铅笔涂写在答题卡上。2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,不得答在第卷上(考生不交第卷)。3、考试结束后,监考人员将第卷和答题卡一并交回。第卷(选择题 共60分)一、选择题:(在每小题给出的四个选项中,有且仅有一个选项符合题目要求,每小题3分,共60分)1、平方根等于它本身的数是( ) A、0 B、1,0 C、0,1,-1
2、 D、0,-12、下列各式中,正确的是 ( )A、如果x2-9=0,则x=3 B、 C、 D、 3、下列各数中,互为相反数的是 ( )A、2与 B、-2与 C、-2与 D、与24、下列实数,0.1,-0.010010001,其中无理数共有( )A、2个 B、3个 C、4个 D、5个5、下列运算结果正确的是( )A、 B、 C、 D、6、下列多项式中,能用公式法分解因式的是( ) A、 B、 C、 D、7、将多项式进行因式分解,结论正确的为( )A、 B、 ABCD C、 D、8、如图,若,则等于( )A、 B、 C、 D、9、在下列条件中,不能说明ABCABC的是( )A、AA,CC,ACAC
3、 B、AA,ABAB,BCBCC、BB,CC,ABAB D、ABAB, BCBC,ACACA10、如图,A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A、在AC、BC两边高线的交点处B、在AC、BC两边中线的交点处BC、在AC、BC两边垂直平分线的交点处CD、在A、B两内角平分线的交点处11、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A、3 B、 C、3或 D、3或 12、实数a、b、c在数轴上的位置如图: 则化简的结果是( )A、abc B、ab+c C、-a+b+c D、a+bc13、我
4、们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式。例如图(1)可以用来解释(a+b)2(ab)2=4ab。那么通过图(2)面积的计算,验证了一个恒等式,此等式是( )A、a2b2=(a+b)(ab) B、(ab)2=a22ab+b2 C、(a+b)2=a2+2ab+b2 D、(ab)(a+2b)=a2+abb2 (1) (2)14、运用你所学的公式计算:( )A、100 B、3600 C、2014 D、2800 15、下列关系式中,正确的是( )A、; B、;C、; D、8米2米816、如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的
5、树梢飞到另一棵树的树梢,则它至少要飞行( )米。A、6 B、8C、10 D、1217、下列命题是假命题的有( ) 若a2=b2,则a=b; 若a,b是有理数,则;一个角的余角大于这个角; 如果A=B,那A与B是对顶角A、1个 B、2个 C、3个 D、4个18、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC折叠,使它落在斜边AB上,且与AB重合,则CD等于( )A、2cm B、3cm C、4cm D、5cm19、尺规作图作AOB 的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线
6、OP,由作法得的根据是( )ODPCABA、SAS B、ASA C、AAS D、SSS(19题图) (20题图)20、已知:在ABC中,AB=6cm,AC=5cm,BC=8cm,ABC和ACB的平分线交于点I,IDAC于D,并且ID=3cm,那么,ABC的面积大小为( )cm2A.30 B.26 C. D.二、填空题。(每空3分,共24分)21、计算:(-4x3+6x2y3)(-4x2)= 。22、已知,=5,则;23、光速约为米/秒,太阳光射到地球上的时间约为秒,则地球与太阳的距离是_米.24、若三角形的三边a、b、c满足a24a+4+=0,则笫三边c的取值范围是 。25、某地区有80万人口
7、,其中各民族所占比例如图所示,则该地区满族人口共有_万人。26、原命题:“如果|a|=|b|,那么a=b”;则其逆命题叙述为 。27、在ABC中,ABAC,AB的中垂线与AC所在直线相交所得的锐角为50,则B的大小为_。28、在证明命题“在ABC中,ABAC,求证:B C”时。我们利用反证法进行证明应该首先假设 。29、如图右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是 。30、如图所示,在ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若DAE=50,则BAC= ,三、小试牛
8、刀。(31题5分,32题7分共12分)31、分解因式:x3x2yxy2y3 32、(本题满分7分)若x、y都是实数,且y8,求x3y的立方根。四、解答题。(33、34、35、36小题各7分,37、38题10分,共48分)33、(本题满分7分)先化简,再求值:已知代数式(x+3)2+(2+x)(2-x),其中.34、(本题满分7分)如图,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E、F,且DE=DF,试证明:AB=AC 转化数学模型35、(本题满分7分)在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30CM。突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲
9、移动的水平距离为60CM,请问水深多少?36、(本题满分7分)如图,在ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CFBE.请你添加一个条件,使BDECDF (不再添加其他线段,不再标注或使用其他字母),并给予证明。 (1)你添加的条件是:_;(2)证明:37、(本题满分10分)射洪县某校八年级(1)班环保小组同学积极响应“爱护水资源,节约用水”的号召,为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,月均用水量x (t)频数(户)频率0x560.125x100.2410x15160.3215x20100.2020x
10、25425x3020.04请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?38、综合探究(本题满分10分)【感知】:如图,点E在正方形ABCD的BC边上,BFAE于点F,DGAE于点G可知ADGBAF(不要求证明)【拓展】:如图,点B、C在MAN的边AM、AN上,点E, F在MAN内部的射线AD上,1、2分别是ABE、CAF的外角已知AB=AC,1=2=BAC.求证:ABECAF 【应用】:如图,在等腰三角形ABC中,AB=AC,ABBC。点D在边BC上,CD=2BD。点E、F在线段AD上,1=2=BAC。若ABC的面积为9,求ABE与CDF的面积之和。 八年级数学 第4页(共4页)