资源描述
华东师大版初三数学:22.1 一元二次方程 教案
提交人:胡志明 提交时间:2015-11-02 作业格式:2
学段: 初中学科: 数学教材版本: 华师大版年级/册: 九年级上 目录: 22.1 一元二次方程 本次研修的重难点题目(知识点): 一元二次方程概念教学
学习内容分析
学习目标描述: 通过实例引入一元二次方程的概念,让学生知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式 ( ≠0)。引导学生通过分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。会用试验的方法估计一元二次方程的解。
学习内容分析: 从生活实例引入,让学生体会数学与生活的关系。通过一元二次方程的概念教学,培养学生建模能力。
教学重点: 一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
理解用试验的方法估计一元二次方程的解的合理性
教学难点: 培养学生建立数学模型的能力
学生学情分析
概念的引入来源于生活,学生容易接受,多数学生不会感觉太难。
教学策略设计
22.1 一元二次方程
教学目标:
1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式 ( ≠0)
2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
3、会用试验的方法估计一元二次方程的解。
重点难点:
1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2. 理解用试验的方法估计一元二次方程的解的合理性。
教学过程:
一 做一做:
1.问题一 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?
分 析:设长方形绿地的宽为x米,不难列出方程
x(x+10)=900
整理可得 x2+10x-900=0. (1)
2.问题2
学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.
解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册;同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程
5(1+x)2=7.2,
整理可得 5x2+10x-2.2=0. (2)
3.思考、讨论
这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?
( 学生分组讨论,然后各组交流 )
共同特点:
(1) 都是整式方程
(2) 只含有一个未知数
(3) 未知数的最高次数是2
二、 一元二次方程的概念
上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:
ax2+bx+c=0(a、b、c是已知数,a≠0)。 其中 叫做二次项, 叫做二次项系数; 叫做一次项, 叫做一次项系数, 叫做常数项。.
三、 例题讲解与练习巩固
1.例1下列方程中哪些是一元二次方程?试说明理由。
(1) (2) (3) (4)
2.例2 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
1) 2)(x-2)(x+3)=8 3)
说明: 一元二次方程的一般形式 ( ≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
3.例3 方程(2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
本题先由同学讨论,再由教师归纳。
解:当 ≠2时是一元二次方程;当 =2, ≠0时是一元一次方程;
4.例4 已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。
分析:一根为2即x=2,只需把x=2代入原方程。
5.练习一 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项
2x(x-1)=3(x-5)-4
练习二 关于 的方程 ,在什么条件下是一元二次方程?在什么条件下是一元一次方程?
本课小结:
1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
2、一元二次方程的一般形式为 ( ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3、在实际问题转化为数学模型( 一元二次方程 ) 的过程中,体会学习一元二次方程的必要性和重要性。
布置作业:课本第19页习题1、2、3
展开阅读全文