1、苏教七年级下册期末解答题压轴数学必考知识点试题经典套题解析一、解答题1解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)如图3,在中,、分别平分和,请直接写出和的关系;如图4,(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,求和的度数2(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连
2、接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值3模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)4问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEA
3、B,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系5如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,
4、A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值6在ABC中,ABCACB,点D在直线BC上(不与B、C重合),点E在直线AC上(不与A、C重合),且ADEAED(1)如图1,若ABC50,AED80,则CDE ,此时, (2)若点D在B
5、C边上(点B、C除外)运动(如图1),试探究BAD与CDE的数量关系,并说明理由;(3)若点D在线段BC的延长线上,点E在线段AC的延长线上(如图2),其余条件不变,请直接写出BAD与CDE的数量关系: (4)若点D在线段CB的延长线上(如图3),点E在直线AC上,BAD26,其余条件不变,则CDE (友情提醒:可利用图3画图分析)7已知,如图1,射线PE分别与直线AB、CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM=,EMF=,且(1)=_ ,=_ ;直线AB与CD的位置关系是_ ;(2)如图2,若点G是射线MA上任意一点,且MGH=PNF,试找出F
6、MN与GHF之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M和点N,时,作PMB的角平分线MQ与射线FM相交于点Q,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由8我们将内角互为对顶角的两个三角形称为“对顶三角形例如,在图1中,的内角与的内角互为对顶角,则与为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:(1)(性质理解)如图2,在“对顶三角形”与中,求证:;(2)(性质应用)如图3,在中,点D、E分别是边、上的点,若比大20,求的度数;(3)(拓展提高)如图4,已知,是的角平分线,且和
7、的平分线和相交于点P,设,求的度数(用表示)9(问题情境)苏科版义务教育教科书数学七下第42页有这样的一个问题:(1)探究1:如图1,在中,P是与的平分线和的交点,通过分析发现,理由如下:和分别是和的角平分线,又在中,(2)探究2:如图2中,H是外角与外角的平分线和的交点,若,则_若,则与有怎样的关系?请说明理由(3)探究3:如图3中,在中,P是与的平分线和的交点,过点P作,交于点D外角的平分线与的延长线交于点E,则根据探究1的结论,下列角中与相等的角是_;A B C(4)探究4:如图4中,H是外角与外角的平分线和的交点,在探究3条件的基础上,试判断与的位置关系,并说明理由;在中,存在一个内角
8、等于的3倍,则的度数为_10(概念认识)如图,在ABC中,若ABDDBEEBC,则BD,BE叫做ABC的“三分线”其中,BD是“邻AB三分线”,BE是“邻BC三分线”(问题解决)(1)如图,在ABC中,A80,B45,若B的三分线BD交AC于点D,求BDC的度数;(2)如图,在ABC中,BP、CP分别是ABC邻BC三分线和ACB邻BC三分线,且BPC140,求A的度数;(延伸推广)(3)在ABC中,ACD是ABC的外角,B的三分线所在的直线与ACD的三分线所在的直线交于点P若Am(),B54,直接写出BPC的度数(用含m的代数式表示)【参考答案】一、解答题1(1),理由详见解析;(2),理由详
9、见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3);360;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)根据角平分线的定义及三角形内角和定理即可得出结论;连结BE,由(2)的结论及四边形内角和为360即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论【详解】(1)理由如下:如图1,;(2)理由如下:在中,在中,;(3
10、),、分别平分和,故答案为:连结,故答案为:;(4)由(1)知,;【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键2(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC解析:(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE
11、-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,G
12、AHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键3(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF解析:(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF180,同理2NEF1
13、8012MEN360 【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得1+2+3+4+5+6=1805=900;由上面的解题方法可得:1+2+3+4+5+6n=180(n1),故答案是:900 , 180(n1);(3)过点O作SRAB,ABCD,SRCD,AM1OM1OR同理C MnOMnORA M1OCMnOM1ORMnOR,A M1OCMnOM1OMnm,M1O平分AM1M2,AM1M22A M1O,同理CMnMn-12CMnO,AM1M2CMnMn-12AM1O2CMnO2M1OMn2m,又A M1M22+3+4+5+6n1CMnMn-
14、1180(n1),2+3+4+5+6n1(180n1802m)点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要4(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间
15、,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的
16、性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决5(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和A
17、CD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1
18、、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A
19、+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要6(1)30,2;(2)BAD2CDE,理由见解析;(3)BAD2CDE;(4)77或13【分析
20、】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:B解析:(1)30,2;(2)BAD2CDE,理由见解析;(3)BAD2CDE;(4)77或13【分析】(1)利用三角形内角和定理以及三角形的外角的性质解决问题即可;(2)结论:BAD=2CDE设B=C=x,AED=ADE=y,则BAC=180-2x,CDE=yx,DAE=180-2y,推出BAD=BAC-DAE=2y-2x=2(y-x),由此可得结论(3)如图中,结论:BAD=2CDE解决方法类似(2)(4)分两种情形:当点E在CA的延长线上,设ABC=C=x,AED=ADE=y,则BAC=180-2x,CDE=18
21、0-(y+x),DAE=180-2y,由题意,BAD=180-BAC-DAE=2x+2y-180=22,推出x+y=101,可得结论如图中,当点E在AC的延长线上时,同法可求【详解】解:(1)如图中,ABCACB50,BAC180505080,AEDCDE+C,CDE805030,ADEAED80,DAE180808020,BADBACDAE802060,2故答案为30,2;(2)结论:BAD2CDE理由:设BCx,AEDADEy,则BAC1802x,CDEyx,DAE1802y,BADBACDAE2y2x2(yx),BAD2CDE;(3)如图中,结论:BAD2CDE理由:设BACBx,AED
22、ADEy,则BAC1802x,CDE180(y+x),DAE1802y,BADBAC+DAE3602(x+y),BAD2CDE故答案为:BAD2CDE;(4)如图中,设ABCCx,AEDADEy,则BAC1802x,CDE180(y+x),DAE1802y,BAD180BACDAE2x+2y18026,x+y103CDE18010377如图中,当点E在AC的延长线上时,设ABCACBx,AEDADEy,则ADBx26,CDEy(x26),ACBCDE+AED,xy+y(x26),xy13,CDExy13故答案为:77或13【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,三角形内角和定理
23、,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型7(1)35;35;ABCD;(2)FMN+GHF=180证明见解析;(3)的值不变,=2【分析】(1)利用非负数的性质可知:=35,推出即可解决问题;(2)结论,只要证明即可解决解析:(1)35;35;ABCD;(2)FMN+GHF=180证明见解析;(3)的值不变,=2【分析】(1)利用非负数的性质可知:=35,推出即可解决问题;(2)结论,只要证明即可解决问题;(3)结论:的值不变,=2如图3中,作PEM1的平分线交M1Q的延长线于R,只要证明R=,=2R即可;【详解】(1)证明:,=35,PFM=MFN=35
24、,EMF=35,EMF=MFN,ABCD;故答案为:35;35;ABCD;(2)解:FMN+GHF=180理由:ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180(3)解:的值不变,=2理由:如图3中,作PEM1的平分线交M1Q的延长线于RABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,=R,设PER=REB=,则有:,可得=2R,=2=2【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用
25、辅助线,构造平行线解决问题,属于中考压轴题8(1)见详解;(2)100;(3)P=45-【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论;(2)设=x, =y,则=x+20,=y-20,可得ABC+DCB=解析:(1)见详解;(2)100;(3)P=45-【分析】(1)由“对顶三角形”的性质得,从而得,进而即可得到结论;(2)设=x, =y,则=x+20,=y-20,可得ABC+DCB=y-20,根据三角形内角和定理,列出方程,即可求解;(3)设ABE=CBE=x,ACD=BCD=y,可得x+y=90-,结合CEP+ACD=CDP+P,即可得到结论【详解】(1)证明:在“对顶三
26、角形”与中,又;(2)比大20,+=+,设=x, =y,则=x+20,=y-20,ABC+ACB=180-A=180-=x+y,ABC+DCB=ABC+ACB-= x+y- x-20=y-20,ABC+DCB+=180,y-20+y=180,解得:y=100,=100;(3),是的角平分线,设ABE=CBE=x,ACD=BCD=y,2x+2y+=180,即:x+y=90-,和的平分线和相交于点P,CEP=(180-2y-x),CDP=(180-2x-y),CEP+ACD=CDP+P,P=(180-2y-x)+y-(180-2x-y)= x+y=45-,即:P=45-【点睛】本题主要考查角平分线
27、的定义,三角形内角和定理,三角形外角的性质,熟练掌握“对顶三角形”的性质,是解题的关键9(2);理由见解析;(3)B;(4),理由见解析;45或60【分析】(2)由(1)中结论可得,依据角平分线的定义,即可得出和均为直角;再根据四边形内角和进行计算,即可得到的度数以及与的解析:(2);理由见解析;(3)B;(4),理由见解析;45或60【分析】(2)由(1)中结论可得,依据角平分线的定义,即可得出和均为直角;再根据四边形内角和进行计算,即可得到的度数以及与的关系;(3)由(1)中结论可得,再根据垂线的定义以及三角形外角性质,即可得出,进而得到;(4)根据,即可得到,再根据角平分线的定义,即可得
28、到,依据,即可判定;由可得,即可得出,再根据在中一个内角等于的倍,分三种情况讨论,即可得出的度数【详解】解:(2)由(1)可得,是外角与外角的平分线和的交点,是与的平分线和的交点,同理可得,四边形中,故答案为:;若,则与关系为:理由:由(1)可得,是外角与外角的平分线和的交点,是与的平分线和的交点,同理可得,四边形中,(3)由(1)可得,平分,是的外角,故答案为:;(4)理由:,分别平分,;由可得,平分,平分,分三种情况:若,则,解得(不合题意),若,则,解得,由(2)可得,即,;若,则,解得,由(2)可得,即,;综上所述,的度数为或故答案为:或【点睛】本题属于三角形综合题,主要考查的是角平分
29、线的定义,三角形外角性质,三角形内角和定理以及平行线的判定的综合运用,熟记基本图形中的结论,准确识图并灵活运用基本结论是解题的关键10(1)95或110;(2)60;(3)m或m或m或m18【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻解析:(1)95或110;(2)60;(3)m或m或m或m18【分析】(1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数;(3)根据的三分线所在的直线与的三分线所在的直线交于点分四种情况画图:情况一:如图,当和
30、分别是“邻三分线”、“邻三分线”时;情况二:如图,当和分别是“邻三分线”、“邻三分线”时;情况三:如图,当和分别是“邻三分线”、“邻三分线”时;情况四:如图,当和分别是“邻三分线”、“邻三分线”时,再根据,根据三角形外角性质,即可求出的度数【详解】解:(1)如图,当BD是“邻AB三分线”时,;当BD是“邻BC三分线”时,;(2)在BPC中,又BP、CP分别是邻BC三分线和邻BC三分线,在ABC中,(3)分4种情况进行画图计算:情况一:如图,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时,; 情况二:如图,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时,;情况三:如图,当BP和CP分别是“邻BC三分线”、“邻AC三分线”时,;情况四:如图,当BP和CP分别是“邻AB三分线”、“邻CD三分线”时,;综上所述:的度数为:或或或【点睛】本题考查了三角形的外角性质,解决本题的关键是掌握并灵活运用三角形的外角性质,注意要分情况讨论