收藏 分销(赏)

陕西师范大学附属中学分校数学八年级上册期末试卷.doc

上传人:丰**** 文档编号:5197830 上传时间:2024-10-28 格式:DOC 页数:18 大小:1.19MB 下载积分:8 金币
下载 相关 举报
陕西师范大学附属中学分校数学八年级上册期末试卷.doc_第1页
第1页 / 共18页
陕西师范大学附属中学分校数学八年级上册期末试卷.doc_第2页
第2页 / 共18页


点击查看更多>>
资源描述
陕西师范大学附属中学分校数学八年级上册期末试卷 一、选择题 1、下列图形中,既是轴对称又是中心对称图形的是(       ) A. B. C. D. 2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000070米.数据0.00000007用科学记数法表示为(       ) A. B. C. D. 3、下列计算正确的是(  ) A. B. C. D. 4、若式子在实数范围内有意义,则x的取值可以是(  ) A.﹣2 B.﹣1 C.0 D.1 5、下列从左至右的变形,属于因式分解的是(       ) A. B. C. D. 6、下列等式成立的是(   ) A. B. C. D. 7、如图,,,,添加一个条件______,即可证明≌.下列添加的条件不正确的是(       ) A. B. C. D. 8、已知关于x的分式方程的解为正数,关于y的不等式组,恰好有三个整数解,则所有满足条件的整数a的和是(   ) A.1 B.3 C.4 D.6 9、如图,,D在边上,,,则的度数为(       ) A.35° B.40° C.50° D.65° 二、填空题 10、如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是(  ) A.②③④ B.①② C.①④ D.①②③④ 11、若分式 的值为0,则x的值是_________. 12、蝴蝶标本可以近似地看作是轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果点B的坐标是,那么它关于y轴对称的点A的坐标是________. 13、若,则_____. 14、若,则___________. 15、在菱形 中, ,为中点,为对角线上一动点,连结和,则的值最小为_______. 16、x2+2kx+9是一个完全平方式,则k的值为______. 17、中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则的值是____________. 18、如图,在平面直角坐标系中,矩形 OABC 的两边分别在 x 轴和y 轴上,OA=10cm,OC=6cm.F 是线段OA 上的动点,从点O 出发,以1cm/s 的速度沿 OA 方向作匀速运动,点 Q 在线段 AB 上.已知A,Q 两点间的距离是O,F 两点间距离的a 倍.若用 (a,t)表示经过时间t(s)时,△OCF,△FAQ,△CBQ 中有两个三角形全等.请写出 (a,t) 的所有可能情况____. 三、解答题 19、因式分解 (1); (2). 20、解分式方程. 21、如图,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求证:AF=DE. 22、如图,在中,,,AE平分∠BAC. (1)计算:若,,求∠DAE的度数; (2)猜想:若,则______; (3)探究:请直接写出∠DAE,∠C,∠B之间的数量关系. 23、某商店用6000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了50%,同样用6000元购进的数量比第一次少了40件. (1)求第一次每件的进价为多少元? (2)若两次购进的玩具售价均为80元,且全部售完,求两次的总利润为多少元? 24、阅读理解应用 待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值. 待定系数法可以应用到因式分解中,例如问题:因式分解. 因为为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积. 故我们可以猜想可以分解成,展开等式右边得: ,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:,,可以求出,. 所以. (1)若取任意值,等式恒成立,则________; (2)已知多项式有因式,请用待定系数法求出该多项式的另一因式; (3)请判断多项式是否能分解成的两个均为整系数二次多项式的乘积,并说明理由. 25、请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 一、选择题 1、B 【解析】B 【分析】根据中心对称图形和轴对称图形的概念进行判断即可. 【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意; B.既是中心对称图形,也是轴对称图形,故此选项符合题意; C.是中心对称图形,但不是轴对称图形,故此选项不合题意; D.不是中心对称图形,是轴对称图形,故此选项不合题意; 故选:B. 【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:; 故选:C. 【点睛】本题考查科学记数法;熟练掌握科学记数法中与的确定方法是解题的关键. 3、B 【解析】B 【分析】根据同底数幂的乘法,幂的乘方和积的乘方来计算求解. 【详解】解:A.,故原选项计算错误,此项不符合题意; B.,故原选项计算正确,此项符合题意; C.,故原选项计算错误,此项不符合题意; D.,故原选项计算错误,此项不符合题意. 故选:B. 【点睛】本题主要考查了同底数幂的乘法,幂的乘方和积的乘方,理解相关运算法则是解答关键. 4、C 【解析】C 【分析】根据0指数幂的性质得x-1≠0,根据分式的性质和二次根式的性质可得x+1>0,由此可求出x的范围.然后在四个选项中选出符合条件的选项即可. 【详解】根据0指数的性质得x-1≠0, 则x≠1, 根据分式的性质和二次根式的性质可得x+1>0, ∴x>-1., ∴x的取值范围是:x>-1且x≠1, 四个选项中只有C选项符合条件. 故选C. 【点睛】本题考查了0指数幂的底数不能为0,二次根式的被开方数为非负数,分式的分母不能为0,掌握以上知识是解题的关键. 5、C 【解析】C 【分析】根据因式分解的定义以及因式分解所遵循的原则逐项判断即可. 【详解】A项,右边不是积的形式,故不是因式分解; B项,等式两边不相等,故不是因式分解; C项,根据因式分解的定义可知是因式分解; D项,,故因式分解不彻底; 故选:C. 【点睛】本题考查了因式分解的定义以及因式分解遵循的基本原则.把一个多项式化为几个整式的积的形式,这种式子变形叫做多项式的因式分解,遵循的原则:多项式是恒等变形;结果必须是积的形式;分解因式必须进行到每一个多项式因式都不能在分解为止等. 6、B 【解析】B 【分析】根据分式的基本性质以及分式的加法运算法则进行判断即可. 【详解】解:A.,故此选项错误,不符合题意; B.,故此选项正确,符合题意; C.,故此选项错误,不符合题意; D.,故此选项错误,不符合题意; 故选:B. 【点睛】本题考查了分式的基本性质以及分式的加减法,熟练掌握分式的基本性质是解本题的关键. 7、B 【解析】B 【分析】根据全等三角形判断条件即可判断. 【详解】解:∵, ∴,即:, ∵,, ∴, 添加,根据HL即可判断≌,A选项不符合题意; 添加,根据SAS即可判断≌,C选项不符合题意; 添加,根据AAS即可判断≌,D选项不符合题意; B选项中,EA与DF不是对应边,所以B选项不能判断≌. 故选:B 【点睛】本题考查全等三角形的判断,熟练掌握全等三角形的判断定理是解题的关键. 8、C 【解析】C 【分析】根据分式方程解的情况,求得的范围,解不等式组确定的范围,进而求得的整数解,求和即可求解. 【详解】解: 去分母得,, 解得 , 时,方程产生增根, ,即 , 且, , 解不等式①得:, 解不等式②得:, 不等式组有解, ∴不等式组的解集为:, 恰好有三个整数解, , 解得, 又且, 且, 整数为,其和为1+3=4, 故选C. 【点睛】本题考查了解分式方程,一元一次不等式组,正确的计算是解题的关键. 9、D 【解析】D 【分析】由可知,是△ADC的一个外角,已知与它不相邻的两个内角,即可求出的度数. 【详解】∵ ∴ ∵在△ADC中,, ∴=30°+35°=65° 故选:D 【点睛】本题只要你考查了三角形的全等的性质,掌握全等三角形对应角相等以及三角形的一个外角等于与它不相邻的两个内角之和是解题的关键. 二、填空题 10、B 【解析】B 【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得 △APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得. 【详解】解:如图 连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S, AP是∠BAC的平分线,∠1=∠2, △APR≌△APS. AS=AR, 又QP/AR, ∠2 = ∠3又∠1 = ∠2, ∠1=∠3, AQ=PQ, 没有办法证明△PQR≌△CPS,③不成立, 没有办法证明AC-AQ=2SC,④不成立. 所以B选项是正确的. 【点睛】本题主要考查三角形全等及三角形全等的性质. 11、1 【分析】根据分式的值为零的条件得到且,解方程即可. 【详解】解:根据分式的值为零的条件得到且, 解得. 故答案为:. 【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零. 12、 【分析】根据关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等,直接求解即可. 【详解】解:关于y轴对称的点的特点为:横坐标互为相反数,纵坐标相等, ∴, 故答案为: . 【点睛】题目主要考查坐标系中对称点的特点,熟练掌握关于坐标轴对称的点的特点是解题关键. 13、-1 【详解】根据得:, 即, xyz=y2z+y-z,且yz-z=-1, 故, 故答案:-1. 14、8 【分析】先把和都化为2为底数的形式,然后利用整体代入求解即可. 【详解】∵, ∴, 则. 故答案为:. 【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答本题关键. 15、2 【分析】根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长. 【详解】作点E′和E关于BD对称.则连接AE′交BD于点P, 【解析】2 【分析】根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长. 【详解】作点E′和E关于BD对称.则连接AE′交BD于点P, ∵四边形ABCD是菱形,AB=4,E为AD中点, ∴点E′是CD的中点, ∴DE′=DC=×4=2,AE′⊥DC, ∴AE′=. 故答案为1、 【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键. 16、±3 【分析】根据完全平方式的特点知,2k=±6,从而可得k的值. 【详解】根据完全平方式的特点,得2k=±6,即k=±3 故答案为:±3 【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的 【解析】±3 【分析】根据完全平方式的特点知,2k=±6,从而可得k的值. 【详解】根据完全平方式的特点,得2k=±6,即k=±3 故答案为:±3 【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,是本题的关键.要注意的是部分同学往往漏掉了k为-3的情况. 17、49 【分析】根据题意和图形,可以得到,,然后变形即可得到ab的值,再将展开,将a2 + b2和ab的值代入计算即可. 【详解】解:由图可得, ,, ∴, ∵小正方形的面积是1, ∴, ∴, ∴, 【解析】49 【分析】根据题意和图形,可以得到,,然后变形即可得到ab的值,再将展开,将a2 + b2和ab的值代入计算即可. 【详解】解:由图可得, ,, ∴, ∵小正方形的面积是1, ∴, ∴, ∴, ∴ = = = 25+ 24 =49; 故答案为:48、 【点睛】本题考查勾股定理、完全平方公式,解答本题的关键是求出ab的值,利用数形结合的思想解答. 18、(1,4),(,5),(0,10) 【分析】分类讨论:①当△COF和△FAQ全等时,得到OC=AF,OF=AQ或OC=AQ,OF=AF,代入即可求出a、t的值;②同理可求当△FAQ和△CBQ全等时a 【解析】(1,4),(,5),(0,10) 【分析】分类讨论:①当△COF和△FAQ全等时,得到OC=AF,OF=AQ或OC=AQ,OF=AF,代入即可求出a、t的值;②同理可求当△FAQ和△CBQ全等时a、t的值,③△COF和△BCQ不全等,④F,Q,A三点重合,此时(0,10),综合上述即可得到答案. 【详解】解:①当△COF和△FAQ全等时, OC=AF,OF=AQ或OC=AQ,OF=AF, ∵OC=6,OF=t,AF=10-t,AQ=at,代入得: 或, 解得:或, ∴(1,4),(,5); ②同理当△FAQ和△CBQ全等时,必须BC=AF,BQ=AQ, 10=10-t,6-at=at, 此种情况不存在; ③因为△CBQ最长直角边BC=10,而△COF的最长直角边不能等于10,所以△COF和△BCQ不全等, ④F,Q,A三点重合,此时△COF和△CBQ全等,此时为(0,10), 故答案为:(1,4),(,5),(0,10). 【点睛】本题主要考查了矩形的性质,全等三角形的性质和判定,坐标与图形的性质等知识点,解此题的关键是正确分组讨论. 三、解答题 19、(1) (2) 【分析】(1)根据完全平方公式因式分解即可求解; (2)根据平方差公式与提公因式法因式分解即可求解. (1)     =      = (2) = = = 【点睛】本题考查了因式分 【解析】(1) (2) 【分析】(1)根据完全平方公式因式分解即可求解; (2)根据平方差公式与提公因式法因式分解即可求解. (1)     =      = (2) = = = 【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 20、原方程无解 【详解】试题分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x﹣2),得 1﹣x=﹣1+x﹣2, 解得x=1、 检验: 【解析】原方程无解 【详解】试题分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x﹣2),得 1﹣x=﹣1+x﹣2, 解得x=1、 检验:把x=2代入(x﹣2)=0,x=2是原方程的增根, ∴原方程无解. 21、见解析 【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE. 【详解】证明:∵AB⊥CB,DC⊥CB, ∴∠B=∠C=90°, ∵BE=CF, ∴B 【解析】见解析 【分析】由题意可得∠B=∠C=90°,BF=CE,由“AAS”可证△ABF≌△DCE,可得AF=DE. 【详解】证明:∵AB⊥CB,DC⊥CB, ∴∠B=∠C=90°, ∵BE=CF, ∴BF=CE,且∠A=∠D,∠B=∠C=90°, ∴△ABF≌△DCE(AAS), ∴AF=DE, 【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键. 22、(1) (2)25° (3) 【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD⊥BC得∠ADC=90°, 【解析】(1) (2)25° (3) 【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD⊥BC得∠ADC=90°,根据三角形内角和得到∠CAD,然后利用∠EAD=∠CAE-∠CAD进行计算; (2)由三角形内角和定理得∠BAC=180°-∠B-∠C,再根据角平分线定义得∠CAE=∠BAC=90°-∠B-∠C,接着利用互余得到∠CAD=90°-∠C,所以∠EAD=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C),然后整理得出,把代入计算即可. (3)同(2)得出∠EAD=(∠C-∠B),即可得到结论. (1)解:∵∠B=30°,∠C=60°,∴∠BAC=180°-∠B-∠C=90°,∵AE平分∠BAC,∴∠CAE=∠BAC=45°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C=30°,∴∠EAD=∠CAE-∠CAD=45°-30°=15°; (2)解:∵∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C,∴∠EAD=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C)=(∠C-∠B),∵∠C-∠B=50°,∴∠DAE=25°,故答案为:25°; (3)解:∵∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C,∴∠DAE=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C)=(∠C-∠B),即∠DAE=(∠C-∠B). 【点睛】本题考查了三角形内角和定理:三角形内角和是180°,角平分线定义.注意从特殊到一般,(3)中的结论为一般性结论. 23、(1)第一次每件的进价为50元 (2)两次的总利润为4000元 【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解; (2)根据总利润=总售 【解析】(1)第一次每件的进价为50元 (2)两次的总利润为4000元 【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+25%)x,根据等量关系,列出分式方程,即可求解; (2)根据总利润=总售价-总成本,列出算式,即可求解. (1) 设第一次每件的进价为x元,则第二次进价为(1+50%)x, 根据题意得:, 解得:x=50, 经检验:x=50是方程的解,且符合题意, 答:第一次每件的进价为50元; (2) 解:(元), 答:两次的总利润为4000元. 【点睛】本题主要考查分式方程的实际应用,有理数四则运算的应用,找准等量关系,列出分式方程,是解题的关键. 24、(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析. 【分析】(1)根据题目中的待定系数法原理即可求得结果; (2)根据待定系数法原理先设另一个多项式,然后根据恒等原 【解析】(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析. 【分析】(1)根据题目中的待定系数法原理即可求得结果; (2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论; (3)根据待定系数原理和多项式乘以多项式即可求得结论. 【详解】(1)根据待定系数法原理,得3-a=2,a=1. 故答案为1. (2)设另一个因式为(x2+ax+b), (x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b =x3+(a+1)x2+(a+b)x+b ∴a+1=0   a=-1  b=3 ∴多项式的另一因式为x2-x+2、 答:多项式的另一因式x2-x+2、 (3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下: 设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或③(x2+x+1)(x2+ax+1), ①(x2+1)(x2+ax+b) =x4+ax3+bx2+ax+b =x4+ax3+(b+1)x2+ax+b ∴a=0, b+1=1 , b=1  由b+1=1得b=0≠1,故此种情况不存在. ②(x+1)(x3+ax2+bx+c), =x4+ax3+bx2+cx+x3+ax2+bx+c =x4+(a+1)x3+(b+a)x2+(b+c)x+c ∴a+1=0  b+a=1   b+c=0  c=1 解得a=-1,b=2,c=1, 又 b+c=0,b=-1≠2,故此种情况不存在. ③(x2+x+1)(x2+ax+1) =x4+(a+1)x3+(a+2)x2+(a+1)x+1 ∴a+1=0,a+2=1, 解得a=-1. 即x4+x2+1=(x2+x+1)(x2-x+1) ∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积. 答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积. 【点睛】本题考查了因式分解的应用、多项式乘以多项式,解决本题的关键是理解并会运用待定系数法原理. 25、(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组 【解析】(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服