资源描述
人教版五年级上册数学应用题附答案
1.大米、面粉和食用油的单价如下表。(“■”代表0~9其中的1个数字)
物品
大米
面粉
食用油
单价
6.■8元/kg
8.2■元/kg
47.50元/瓶
(1)张奶奶买10kg大米和5kg面粉。带100元够吗?为什么?
(2)李叔叔买了2瓶食用油,付给售货员100元,应找回多少钱?
2.五(2)班48名师生照相合影。合影价格表定价如下:30元(含5张相片),加印一张2.5元。每人一张照片,一共需要付多少钱?
3.藏羚羊的奔跑速度大约可达到每分钟1.33千米,非洲猎豹的速度大约是藏羚羊的1.3倍,非洲猎豹的速度每分钟大约是多少千米?(得数保留两位小数)
4.五年级一班48个同学集体合影。定价是24.5元,给4张相片。另外加印是每张2.3元。全班每人一张,再送给班主任和5个科任教师每人一张,一共要付多少元?
5.1台拖拉机每小时耕地0.7公顷,3台拖拉机1.5小时耕地多少公顷?
6.下面框里是张叔叔每月养车费用的记录单。
记录单A.保养平均每月260元:
B.保养美容和保修平均每月180元;
C.目前每升汽油的价格是6.70元;
D.每千米大约耗油0.08升;
E.每月平均行驶1000千米;F.每月停车费大约120元。
(1)张叔叔想计算出每月加油共需要多少钱?他需要用到记录单上的哪些信息?请把所选信息前面的字母用“○”圈出来。
(2)根据你选出的信息,计算出张叔叔每月加油一共需要多少元钱?
7.面粉每千克5.5元,大米每千克6.4元,买面粉和大米各15千克,支付200元,应找回多少元?
8.张阿姨给在外省读大学的女儿寄衣服,衣服重5.3kg,需要付多少元快递费?
快递公司收费标准1.1kg以内收费10元。
2.超过1kg的部分按7.5元/kg
收费(不足1kg按1kg计算)。
9.妈妈带100元去超市购物,她买了一条鲈鱼,用去27.57元,买2袋水饺,每袋25.9元。请你估一估,剩下的钱还够买一盒17.9元的鲜牛乳吗?(写出估算过程)
10.王阿姨去超市购物。她买了2箱牛奶,每箱38.5元。还买了1.5kg肉,每千克32.8元。王阿姨一共花了多少钱?
11.8辆汽车4小时运货95吨,平均每辆汽车每小时运货多少吨?(得数保留两位小数)
12.甲乙两车从相距450千米的两地同时出发相向而行,经过3小时后相遇。此时甲车已经超过两地中点45千米。请问甲、乙车每小时各行驶多少千米?
13.玲玲家上个月一共用电387度,其中峰电用量是谷电用量的3.5倍。玲玲家上个月峰电和谷电各用了多少度?(用方程解)
14.A、B两港口相距210千米,甲、乙两船同时从A、B两个港口出发,相向而行,3小时后相遇。甲船每小时航行38千米,乙船每小时航行多少千米?
15.张大叔养白兔和黑兔,白兔的只数是黑兔的3倍。______________,白兔和黑兔各有多少只?
(选择一个你喜欢的条件,将序号填在横线上,再解答)
A.白兔和黑兔一共180只
B.白兔比黑免多180只
16.山南中央公园占地约75公顷,其中水域面积大约是景观绿化面积的1.5倍。中央公园的水域面积和景观绿化面积大约各是多少公顷?(列方程解答)
17.电脑小组男生人数是女生人数的3倍,后来有8名男生转到科技小组,这时电脑小组男、女生人数一样多。原来电脑小组男、女生各有多少人?(列方程解答)
18.请问:今年大头儿子几岁?(用方程解答)
19.某小学的学生在公司里铺草坪,五年级学生铺了164平方米,比四年级铺的3倍多8平方米,四年级铺草坪多少平方米?
20.小林家和小云家相距1.8千米,周日早上9:00两人同时从家骑自行车相向而行,在途中相遇。(如下图)
(1)从上图看,( )的速度快一些。
(2)小林每分钟行0.25千米,小云每分钟行多少千米?
21.一节1号电池多少元?
22.下表是中国银行2021年12月13日的外汇牌价。
1美元兑换人民币6.36元 1欧元兑换人民币7.18元1日元兑换人民币0.056元 1韩元兑换人民币0.0054元
(1)2.5欧元可以兑换多少人民币?
(2)一个玩具标价100元人民币,相当于多少日元?(结果保留两位小数)
(3)同一块手表在美国标价500美元,在韩国标价58万韩币。哪儿的标价低?
23.甲乙两车同时从相距270千米的两地相对开出,经过2.5小时相遇,甲车每小时行52千米,乙车每小时行多少千米?
24.小华和妈妈去超市买了3盒牙膏和2袋洗衣粉,一共花了30.9元,一盒牙膏5.1元,一袋洗衣粉多少钱?
25.两台播种机1.8小时播种5.4公顷,那么每台播种机每小时播种多少公顷?
26.一辆汽车3小时行驶180.6千米。照这样计算,4.5小时行驶多少千米?
27.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
28.修路队叔叔为我们村子修公路,如果每天修3.5千米,那么25千米的公路,至少需要几天修完?
29.把一桶18.9升的桶装水分装在0.55升的塑料瓶中,需要准备多少个瓶子?
30.冬冬收集了96枚邮票,比红红收集的3倍少12枚。红红收集了多少枚邮票?
31.同学们到公园去划船,大船每条坐4人,小船每条坐2人,共租了18条大船和小船,正好坐满。
(1)划船的同学可能是51人吗?为什么?
(2)如果划船的同学正好是60人,那么大船、小船各租了多少条?
32.如图,大三角形的空白部分是一个正方形,三角形甲与三角形乙的面积和是39平方厘米,求大三角形ABC的面积。(提示:可以用拼一拼转化的方法,也可以用方程)
33.探索梯形时,将梯形转化为学过的图形,通过比较转化前后图形的面积得到梯形的面积。若将梯形转化为学过的三角形(如图),怎么得出梯形的面积公式呢?请写出你的思考过程。
34.如下图,平行四边形的面积是45平方厘米,求阴影部分的面积。(单位:厘米)
35.一批同样的圆木堆成的横截面是梯形,上层是5根,下层是10根,一共堆6层,这堆圆木共多少根?如果这批圆木共重26.1吨,每根圆木重多少吨?
36.下面是一块荒地平面图.
(1)这块荒地如果种花椒,大约可以种多少株?如果种桑树呢?
(2)如果每株桑树上的桑叶养的蚕可卖3.5元,每株花椒树上的花椒可卖15元,你觉得种什么树比较划算?算算看,将过程写在下面.
37.张兵家想利用篱笆和现有的一段墙围成一块菜地,已知篱笆的全长70米,这块菜地的面积是多少平方米?
38.两个完全一样的直角三角形,部分重叠在一起,如图,阴影部分的面积是多少?(单位:cm)
39.下面三个大三角形,分别分割成了两个小三角形。(每个小方格的边长代表1厘米)
(1)观察上面各图中小三角形①和②,③和④,⑤和⑥,发现每组两个小三角形的面积( ),因为它们( )。
(2)根据上述发现,你能将一个三角形分割成4个面积相等的小三角形吗?你有几种不同的方法,试着画一画。
40.如图,ABCD是平行四边形,BC=8cm,EC=6cm,阴影部分面积比△EFG的面积大12cm2,求FC的长。
41.故事类图书和科普类图书各有多少本?(列方程解答)
42.五(1)班图书角故事书的本数是科技书的3倍,故事书比科技书多48本,故事书和科技书分别有多少本?(列方程解答)
43.湿地与森林、海洋并称为地球的三大生态系统。目前,北京400m2以上的湿地总面积约为5.88万公顷,分为天然湿地和人工湿地,人工湿地的面积是天然湿地的1.1倍。天然湿地和人工湿地的面积分别是多少万公顷?(用方程解答)
44.少先队员参加植树活动,五年级去的人数是四年级的1.2倍,五年级去的人数比四年级多20人。原来两个年级各去了多少人?(列方程解答)
45.一辆快车和一辆慢车,同时从A、B两地相对开出,经过4小时后,两车在距中点20千米处相遇,已知两车速度和为128千米。快车和慢车的速度分别是多少千米?
46.甲乙两车同时从相距千米的、两地相对开出,2.5小时后两车相遇。甲车平均每小时比乙车多行千米,求甲车的速度是多少?(列方程解答。)
47.学校购买一批篮球和足球,篮球的个数是足球的3.5倍,足球的个数比篮球少20个。篮球和足球各多少个?(列方程解答)
48.五(1)班男、女生各多少人?
49.小明和小芳是集邮爱好者,小明的邮票数量是小芳的5倍,如果小明给小芳38张,他们的邮票数量正好相等,小明和小芳原来各有多少张邮票?(用方程解)
50.一块梯形地的面积是450平方米,它的下底是40米,高15米。它的上底是多少米?(只列式不解答)
51.一个圆形的荷花池全长300米,现在要在池周围栽柳树,每隔5米栽一棵。需要柳树苗多少棵?
52.某复印店对于用A4纸复印的收费标准如下表。
项目
收费标准
普通A4纸复印
20张以内(含20张),0.5元/张
超过20张的部分,0.4元/张
彩色A4纸复印
0.8元/张
兰兰要复印一份资料,需要用48张普通A4纸,她复印这份资料应付多少钱?
53.国庆节期间,伟伟一家开车到游乐场游玩,那里的停车场收费标准如下,伟伟的爸爸付了13.5元的停车费,你知道伟伟的爸爸的车最多停了多长时间吗?
54.贝贝和丽丽、红红一起去给第一小组的48名同学买汽水,下图是冷饮店打的广告,如果每瓶汽水1.2元,她们至少用多少钱给大家买汽水,才可使每人都能喝到1瓶汽水?
55.某超市举办“买四送一”促销活动,每盒牛奶2.8元,小华要买20盒,一共需要多少钱?
56.某市的出租车收费标准如下:乘车路程2千米(包括2千米)收费6元,超过2千米的部分每千米收费1.2元(不足1千米按1千米计算),张老师打车上班花了10.8元,张老师家距离学校多少千米?
57.王阿姨家2020年8月份用电量为210度,根据下面的资料计算王阿姨家8月份应缴电费多少钱?
按省物价局印发的《河北省居民生活用电试行阶梯电价实施方案》的通知要求,阶梯电价自2012年7月1日执行。
第一档:居民户月用电量在180度及以内,维持现行电价水平。其中:不满1千伏用户电价每度0.52元(居民用户电压一般为220伏)。
第二档:居民户月用电量在181度~280度,在第一档电价基础上每度提高0.05元。
第三档:居民户月用电量在281度及以上,在第一档电价基础上每度提高0.30元。
58.超市地下停车场收费标准:2小时内(含2小时)收费8元;超过2小时,每小时加收2.5元(不足1小时按1小时计算)。爸爸停车7.5小时,需要缴纳多少停车费?
59.某停车场规定:停车一次至少交停车费5元,可以停两小时;超过2小时的部分,每停1小时(不够1小时,按1小时计算)收1.5元。爸爸共交停车费12.5元,他的车在停车场最多停了多长时间?
60.有一根木料长20米,先锯下2.5米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了7次,每根短木条长多少米?
61.五(1)班原有班费24.2元,同学们卖废品又得到16.4元。用这些钱正好可以买14根跳绳,平均每根跳绳多少元?
62.一列火车共有16节车厢,每节车厢长24.4米,相邻两个车厢间隔2.4米,这列火车全长是多少米?
63.在一条林荫道的两边安装路灯,每隔10米装一盏,如果道路的两端都要装,一共要装20盏,则这条林荫道全长多少米?
64.“植树问题”有两端植、一端植、两端都不植三种情况。画图并配上文字,说明三种情况间隔数与棵数之间的关系。
65.某校五年级同学去参观科技展览。272人排成两路纵队,前后相邻两排各相距0.8米,队伍每分钟走60米。现在要过一座长810米的桥,从排头两人上桥到排尾两人离开桥,共需要多少分?
66.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯?
67.园丁在一个直径是10米的圆形花圃内栽了一些花,平均每株花占地面积为2平方分米,沿着花圃的周围每隔1.57米栽一棵树.
(1)这个花圃栽了多少株花?
(2)花圃周围能栽多少棵树?
68.马路的一边每相隔9米栽有一棵柳树(两端都栽),张军乘汽车5分钟共看到501棵树。问汽车每小时走多少千米?
69.奶奶去超市买了一些排骨,到家后爷爷问:“这些排骨多重?”但奶奶记不清了,你能根据下面提供的信息,帮奶奶算一算这些排骨有多重吗?
信息1:奶奶付给售货员50元
信息2:排骨每千克18元
信息3:售货员找回12.2元
70.有一条长1800米的公路,在公路的一侧从头到尾每隔6米栽一棵树,一共需要准备多少棵树苗?
【参考答案】
1.(1)不够;见详解
(2)5元
【解析】
(1)从表中可知,大米的单价超过6元,看作6元;面粉的单价超过8元,看作8元;根据单价×数量=总价,分别计算出买10kg大米和5kg面粉的价钱,再相加,就是总价,与带的100元相比较,如果大于或等于100元,就不够,反之就够。
(2)根据单价×数量=总价,求出2瓶食用油的价钱,再用付给售货员的100元减去总去2瓶食用油的价钱,就是应找回的钱数。
(1)6.■8≈6
8.2■≈8
6×10+8×5
=60+40
=100(元)
6.■8×10+8.2■×5>100,不够。
答:不够,把大米的单价看作6元、面粉的单价看作8元,都比实际的单价少,总价正好是100元,那么实际的总价大于100元,所以不够。
(2)47.5×2=95(元)
100-95=5(元)
答:应找回5元。
【点睛】
本题考查小数乘法的计算以及用估算的方法解决实际问题,掌握单价、数量、总价之间的关系是解题的关键。
2.5元
【解析】
五(2)班48名师生照相合影,需要48张照片,减去5张还需加印43张,据此求出一共需要付多少钱即可。
(元)
答:一共需要付137.5元钱。
【点睛】
本题考查小数乘法,解答本题的关键是找到要加印的照片的张数。
3.73千米
【解析】
根据求一个数的几倍是多少,用乘法计算即用藏羚羊的奔跑速度乘1.3就是,非洲猎豹的速度,结果根据四舍五入法保留两位小数即可。
1.33×1.3≈1.73(千米)
答:非洲猎豹的速度每分钟大约是1.73千米。
【点睛】
本题考查求一个数的几倍是多少,明确用乘法是解题的关键。
4.5元
【解析】
照完后送4张相片,全班每人要一张,再送给班主任和5个科任教师每人一张,也就是说五年级一班还需要再加印张相片就可以了。求出这50张相片的价格,再加上24.5元即可。
(元)
答:一共要付139.5元。
【点睛】
此题主要考查了乘法、加法的意义的应用,要熟练掌握,解答此题的关键是要明确单价、总价、数量的关系。
5.15公顷
【解析】
可以先求3台1小时耕地多少公顷,再求3台拖拉机1.5小时可以耕地多少公顷。
0.7×3×1.5
=2.1×1.5
=3.15(公顷)
答:3台拖拉机1.5小时耕地3.15公顷。
【点睛】
此题主要根据工作效率、工作时间、工作量三者之间的关系解决问题。
6.(1)他需要用到记录单上每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)536元
【解析】
(1)要想求出每月加油共需要的钱数,则需要知道油的单价和数量,据此解答即可。
(2)根据单价×数量=总价,即可求出每月加油共需要的钱数,据此计算即可。
(1)他需要知道每升汽油的价格、每千米的耗油量和每月平均行驶的距离。
(2)6.7×(0.08×1000)
=6.7×80
=536(元)
答:张叔叔每月加油一共需要536元钱。
【点睛】
本题考查单价、数量和总价的关系,明确它们之间的关系是解题的关键。
7.5元
【解析】
根据单价×数量=总价,分别求出15千克面粉、大米的价钱,再相加,即是面粉和大米的总价;最后用支付的钱数减去花去的钱数,即可得出应找回的钱数。
5.5×15+6.4×15
=(5.5+6.4)×15
=11.9×15
=178.5(元)
200-178.5=21.5(元)
答:应找回21.5元。
【点睛】
掌握单价、数量、总价之间的关系是解题的关键。解题过程中可以运用乘法分配律a×c+b×c=(a+b)×c进行简便运算。
8.5元
【解析】
根据重量×单价=总价先求出超出1kg的部分的费用,再加上10元即可。
5.3≈6
(6-1)×7.5+10
=37.5+10
=47.5(元)
答:需要付47.5元快递费。
【点睛】
此题考查的是分段计费问题,解答此题关键是找准收费标准,然后根据单价×数量=总价把各段费用相加。
9.够买
【解析】
将鲈鱼和水饺的单价进行估大为相近的整数,然后根据单价×数量=总价,求出一条鲈鱼和2袋水饺的总价,用100减去它们的总价,然后与17.9元进行对比即可。
27.57元≈28元 25.9元≈26元
28+26×2
=28+52
=80(元)
100-80=20(元)
20>17.9
答:把所买物品单价估多了都够买,所以一定够买。
【点睛】
本题考查单价、数量和总价的关系,明确它们之间的关系是解题的关键。
10.2元
【解析】
用牛奶的箱数乘每箱的单价,可得出买牛奶花的价钱。用每千克肉的单价,乘肉的重量,可得出买肉花的价钱。把买牛奶和买肉的价钱加起来,即可得解。
(元)
答:王阿姨一共花了126.2元。
【点睛】
此题的解题关键是掌握单价、数量和总价三者之间的关系,列出算式,求出结果。
11.97吨
【解析】
运的货物总质量÷时间÷汽车辆数=平均每辆汽车每小时运货多少吨,据此列式解答。
95÷4÷8
=23.75÷8
≈2.97(吨)
答:平均每辆汽车每小时运货2.97吨。
【点睛】
关键是掌握小数除法的计算方法,掌握用四舍五入法保留近似数。
12.甲车每小时行90千米;乙车每小时行60千米
【解析】
先求出甲车行驶的路程,再根据“速度=路程÷时间”求出甲车的速度,等量关系式:(甲车的速度+乙车的速度)×相遇时间=总路程,据此列方程解答。
甲车每小时行驶的路程:(450÷2+45)÷3
=(225+45)÷3
=270÷3
=90(千米)
解:设乙车每小时行x千米。
(90+x)×3=450
90+x=450÷3
90+x=150
x=150-90
x=60
答:甲车每小时行90千米,乙车每小时行60千米。
【点睛】
根据路程、时间、速度之间的关系求出甲车每小时行驶的路程,并熟记相遇问题的计算公式是解答题目的关键。
13.峰电用量301度;谷电用量86度
【解析】
设谷电用量x度,则峰电用量3.5x度,根据峰电用量+谷电用量=387度,列出方程求出x的值是谷电用量,谷电用量×3.5=峰电用量,据此分析。
解:设谷电用量x度,则峰电用量3.5x度。
3.5x+x=387
4.5x÷4.5=387÷4.5
x=86
86×3.5=301(度)
答:玲玲家上个月峰电和谷电各用了301度、86度。
【点睛】
用方程解决问题的关键是找到等量关系。
14.A
解析:32千米
【解析】
根据题意,等量关系:(甲船的速度+乙船的速度)×3=A、B两港口的距离,据此列出方程,并求解。
解:设乙船每小时航行千米。
(38+)×3=210
(38+)×3÷3=210÷3
38+=70
38+-38=70-38
=32
答:乙船每小时航行32千米。
【点睛】
根据速度和×相遇时间=路程,得到等量关系,并根据等量关系列出方程是解题的关键。
15.A
解析:A;135只;45只
【解析】
横线上填白兔和黑兔一共180只,设黑兔有x只,那么白兔就有3x只,依据白兔只数+黑兔只数=180只列方程即可解答。
解:设黑兔有x只,那么白兔就有3x只,
x+3x=180
4x=180
x=180÷4
x=45
45×3=135(只)
答:白兔有135只,黑兔有45只。
【点睛】
此题的解题关键是弄清题意,把黑兔的只数设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
16.45公顷;30公顷
【解析】
根据题意,假设景观绿化面积为x公顷,水域面积大约是景观绿化面积的1.5倍,所以水域面积为1.5x公顷,景观绿化面积+水域面积=中央公园面积,据此列出方程,求解即可。
解:设景观绿化面积为x公顷,水域面积为1.5x公顷,
x+1.5x=75
2.5x=75
x=75÷2.5
x=30
75-30=45(公顷)
答:中央公园的水域面积大约是45公顷,景观绿化面积大约是30公顷。
【点睛】
此题的解题关键是弄清题意,把景观绿化面积设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
17.女生:4人;男生:12人
【解析】
设原有女生人数为x人,原有男生人数用x表示。再根据男生、女生之间的等量关系:原有男生人数-8=原有女生人数,列方程解决问题。
解:设原来电脑小组女生有x人,则男生有3x人。
3x-8=x
2x=8
x=4
3x=3×4=12
答:原来电脑小组女生有4人,男生有12人。
【点睛】
列方程解决问题的关键是找到事物间的等量关系。
18.9岁
【解析】
设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。
解:设今年大头儿子x岁。
4x-x=27
3x÷3=27÷3
x=9
答:今年大头儿子9岁。
【点睛】
用方程解决问题的关键是找到等量关系。
19.52平方米
【解析】
把四年级铺草坪的面积设为未知数,等量关系式:四年级铺草坪的面积×3+8平方米=五年级铺草坪的面积,据此列方程解答。
解:设四年级铺草坪x平方米。
3x+8=164
3x=164-8
3x=156
x=156÷3
x=52
答:四年级铺草坪52平方米。
【点睛】
分析题意找出等量关系式是解答题目的关键。
20.(1)小林;
(2)0.2千米
【解析】
(1)观察图示,旗子离着谁家远谁的速度就快一些;
(2)设小云每分钟行x千米,根据小林速度×时间+小云速度×时间=1.8千米,列出方程解答即可。
(1)从上图看,小林的速度快一些。
(2)解:设小云每分钟行x千米。
0.25×4+4x=1.8
1+4x-1=1.8-1
4x÷4=0.8÷4
x=0.2
答:小云每分钟行0.2千米。
【点睛】
关键是理解速度、时间、路程之间的关系,用方程解决问题的关键是找到等量关系。
21.9元
【解析】
由题意可知,根据总价÷数量=单价,据此解答即可。
5.4÷6=0.9(元)
答:一节1号电池0.9元。
【点睛】
本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。
22.(1)17.95元;
(2)1785.71日元;
(3)在韩国标价低
【解析】
(1)根据人民币与外汇的对照表,再根据乘法意义解答即可;
(2)根据人民币与外汇的对照表,再根据除法意义解答即可;
(3)分别求出500美元,58万韩币相当于人民币多少元,然后再比较即可。
(1)2.5×7.18=17.95(元)
答:2.5欧元可以兑换17.95元人民币。
(2)100÷0.056≈1785.71(日元)
答:相当于1785.71日元。
(3)500×6.36=3180(元)
580000×0.0054=3132(元)
3132元<3180元
答:在韩国标价低。
【点睛】
此题考查的是人民币与外汇的换算方法,明确换算方法是解题关键。
23.56千米
【解析】
已知甲车每小时行52千米,要求乙车每小时行多少千米,应求出甲乙两车的速度和,根据路程÷相遇时间=速度和,然后用速度和减去甲车的速度,即为所求。
270÷2.5-52
=108-52
=56(千米/时)
答:乙车每小时行56千米。
【点睛】
此题主要考查相遇问题中的基本数量关系:路程÷相遇时间=速度和。
24.8元
【解析】
先设出所求问题为x,进而根据“单价×数量=总价”分别计算出买牙膏和洗衣粉的总价,继而根据“买牙膏的钱数+洗衣粉的钱数=一共花的钱数”列出方程,进行解答即可。
解:设一袋洗衣粉x元。
3×5.1+2x=30.9
15.3+2x=30.9
15.3+2x-15.3=30.9-15.3
2x=15.6
2x÷2=15.6÷2
x=7.8
答:一袋洗衣粉7.8元。
【点睛】
解答此题的关键是先设出所求数,进而找出数量间的相等关系式,然后根据相等关系式,列出方程,进行解答即可得出结论。
25.5公顷
【解析】
根据题意,此题可先求出平均每台播种机1.8小时能播种多少公顷,再求出每台每小时播种多少公顷,列出综合算式为5.4÷2÷1.8,由此进行解答即可。
5.4÷2÷1.8
=2.7÷1.8
=1.5(公顷)
答:每台播种机每小时播种1.5公顷。
【点睛】
此题属于连除应用题,解决此题也可以先求出两台播种机平均每小时能播种多少公顷,再求出每台每小时播种多少公顷。
26.9千米
【解析】
根据速度=路程÷时间求出这辆汽车的速度,再乘4.5,就是4.5小时行驶的路程,据此解答。
180.6÷3×4.5
=60.2×4.5
=270.9(千米)
答:4.5小时行驶270.9千米。
【点睛】
本题主要考查了学生对路程、速度和时间三者之间关系的掌握情况。
27.4千克
【解析】
根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】
此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
28.8天
【解析】
用路的总长25千米除以每天修的3.5千米,利用“进一法”将商保留到整数部分,求出至少需要几天修完。
25÷3.5≈8(天)
答:至少要8天修完。
【点睛】
本题考查了工程问题,掌握“工作时间=工作总量÷工作效率”是解题的关键。
29.35个
【解析】
用桶装水的量÷塑料瓶容量,结果用进一法保留整数即可。
18.9÷0.55≈35(个)
答:需要准备35个瓶子。
【点睛】
最后无论剩下多少水,都得需要一个瓶子来装。
30.36枚
【解析】
设红红收集了x枚邮票,根据红红收集的邮票数量×3-12=冬冬收集的邮票数量,列出方程解答即可。
解:设红红收集了x枚邮票。
3x-12=96
3x-12+12=96+12
3x÷3=108÷3
x=36
答:红红收集了36枚邮票。
【点睛】
用方程解决问题的关键是找到等量关系。
31.(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1
解析:(1)不可能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)大船租了12条,小船租了6条。
【解析】
(1)偶数与偶数的和是偶数,据此判断即可;
(2)设大船租了x条,小船租了(18-x)条,再根据划船的同学正好是60人,列出方程解答即可。
(1)不能,因为无论租几条大船,人数都是4的倍数,无论租几条小船人数都是2的倍数,相加的和是偶数,而51是奇数,所以划船的同学不可能是51人。
(2)解:设大船租了x条,小船租了(18-x)条。
4x+2(18-x)=60
2x+36=60
2x=24
x=12
小船:18-12=6(条)
答:大船租了12条,小船租了6条。
【点睛】
本题考查奇数与偶数、列方程解决问题,解答本题的关键是掌握列方程解决问题的计算方法。
32.75平方厘米
【解析】
把正方形的边长设为未知数,三角形甲的面积=9厘米×正方形的边长,三角形乙的面积=4厘米×正方形的边长,等量关系式:三角形甲的面积+三角形乙的面积=39平方厘米,求出小正方形的
解析:75平方厘米
【解析】
把正方形的边长设为未知数,三角形甲的面积=9厘米×正方形的边长,三角形乙的面积=4厘米×正方形的边长,等量关系式:三角形甲的面积+三角形乙的面积=39平方厘米,求出小正方形的边长最后利用三角形的面积公式求出大三角形的面积,据此解答。
解:设正方形的边长为x厘米。
4x÷2+9x÷2=39
2x+4.5x=39
6.5x=39
x=39÷6.5
x=6
(6+9)×(6+4)÷2
=15×10÷2
=150÷2
=75(平方厘米)
答:大三角形ABC的面积为75平方厘米。
【点睛】
利用方程求出正方形的边长并熟练掌握三角形的面积计算公式是解答题目的关键。
33.见详解
【解析】
由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。
小三角形的面积=ah÷2=ah
大三角形的
解析:见详解
【解析】
由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。
小三角形的面积=ah÷2=ah
大三角形的面积=bh÷2=bh
梯形的面积=小三角形的面积+大三角形的面积
=ah+bh
=(a+b)h
=(a+b)h
【点睛】
掌握三角形面积计算方法,把梯形转化为两个三角形,进而推导出梯形面积是解答此题的关键。
34.5平方厘米
【解析】
根据平行四边形的面积=底×高可知,平行四边形的底=面积÷高,先求出平方四边形的底;阴影部分是一个底为(平行四边形的底-6)厘米、高为5厘米的三角形,根据三角形的面积=底×高÷2
解析:5平方厘米
【解析】
根据平行四边形的面积=底×高可知,平行四边形的底=面积÷高,先求出平方四边形的底;阴影部分是一个底为(平行四边形的底-6)厘米、高为5厘米的三角形,根据三角形的面积=底×高÷2,代入数据计算即可。
45÷5=9(厘米)
(9-6)×5÷2
=3×5÷2
=15÷2
=7.5(平方厘米)
答:阴影部分的面积是7.5平方厘米。
【点睛】
灵活运用平行四边形、三角形的面积计算公式是解题的关键。
35.45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
解析:45根;0.58吨
【解析】
(5+10)×6÷2=45(根)
26.1÷45=0.58(吨)
答:这堆圆木共45根,每根圆木重0.58吨。
36.(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑
解析:(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑树.
(2)4125×3.15-14437.5(元),
825×15=12375(元),14437.5>12375,所以种桑树比较划算.
37.5平方米
【解析】
解析:5平方米
【解析】
38.30平方厘米
【解析】
根据题干分析可知,阴影部分的面积就等于红色部分梯形的面积,梯形的下底是9厘米、高是4厘米,根据图形可知上底是9﹣3=6厘米,据此利用梯形的面积公式计算即可解答.
(9﹣3+
解析:30平方厘米
【解析】
根据题干分析可知,阴影部分的面积就等于红色部分梯形的面积,梯形的下底是9厘米、高是4厘米,根据图形可知上底是9﹣3=6厘米,据此利用梯形的面积公式计算即可解答.
(9﹣3+9)×4÷2,
=15×2,
=30(平方厘米),
答:阴影部分的面积是30平方厘米.
39.(1)相等;等底等高
(2)见详解
【解析】
(1)三角形的面积=底×高÷2,所以等底等高的三角形的面积相等;
(2)要想使三角形面积相等,则三角形的底和高都相等即可。
(1)观察上面各图中小三角形
解析:(1)相等;等底等高
(2)见详解
【解析】
(1)三角形的面积=底×高÷2,所以等底等高的三角形的面积相等;
(2)要想使三角形面积相等,则三角形的底和高都相等即可。
(1)观察上面各图中小三角形①和②,③和④,⑤和⑥,发现每组两个小三角形的面积相等,因为它们等底等高。
(2)
【点睛】
本题考查三角形的面积,解答本题的关键是掌握三角形面积的计算方法。
40.5厘米
【解析】
由图可知,△EFG+梯形BCFG=△BCE,阴影部分+梯形BCFG=平行四边形ABCD,根据阴影部分与△EFG的面积差表示出平行四边形ABCD与阴影部分的面积之差,利用三角形的面积
解析:5厘米
【解析】
由图可知,△EFG+梯形BCFG=△BCE,阴影部分+梯形BCFG=平行四边形ABCD,根据阴影部分与△EFG的面积差表示出平行四边形ABCD与阴影部分的面积之差,利用三角形的面积计算公式计算出△BCE的面积,再求出平行四边形ABCD的面积,最后利用“高=平行四边形的面积÷底”求出FC的长。
分析可知,阴影部分面积-△EFG=12cm2
(阴影部分+梯形BCFG)-(△EFG+梯形BCFG)=12cm2
平行四边形ABCD-△BCE=12cm2
△BCE的面积:8×6÷2
=48÷2
=24(cm2)
平行四边形ABCD的面积:24+12=36(cm2)
FC的长度:36÷8=4.5(厘米)
答:FC长4.5厘米。
【点睛】
分析题意求出平行四边形ABCD的面积是解答题目的关键。
41.科普类图书有160本;故事类图书有320本
【解析】
根据题意,设科普类图书有x本,故事类图书是科普类图书的2倍,则科普类图书有2x本,根据等量关系:故事类图书本数+科普类图书本数=480,列方程解
解析:科普类图书有160本;故事类图书有320本
【解析】
根据题意,设科普类图书有x本,故事类图书是科普类图书的2倍,则科普类图书有2x本,根据等量关系:故事类图书本数+科普类图书本数=480,列方程解答即可。
解:设科普类图书有x本。
x+2x=480
3x=480
x=160
160×2=320(本)
答:科普类图书有160本,科普类图书有320本。
【点睛】
本题考查了列方程解应用题,关键是根据等量关系:故事类图书本数+科普类图书本数=480列方程。
42.72本;24本
【解析】
设
展开阅读全文