资源描述
人教版六年级上册数学应用题附答案
1.三名长跑运动员进行赛前训练。小刚跑了4km,小刚跑的等于小震跑的,小涛跑的是小震的。小涛跑了多少千米?
2.六年级共有学生240人,其中六(1)班人数占,六(2)班人数占,这两个班哪个班的人数多?多多少人?
3.修一条路全长200米,第一天修了全长的,第二天比第一天修的还多米,第二天修了多少米?
4.教材的循环使用可以节约资源,每减少一本新教材的使用,可以减少耗纸约千克。六(1)班有45人,如果每人每学期重复使用8本教材,那么每人每学期可以节约多少千克纸?全班每学期一共可以节约多少千克纸?
5.一本故事书有360页,已经看了全书的。
6.河口县某小学六年级原有学生238人,后来六年级转来2人,现在六年级人数的正好是五年级现在的人数,现在五年级比六年级少多少人?
7.一本《十万个为什么》有180页,明明第一天看了总页数的,第二天看的页数是第一天的,明明第二天看了多少页?
8.学校组织同学们参加兴趣小组活动,参加绘画组的共90人,参加文艺组的同学是绘画组的,参加书法组的同学是绘画组的,参加书法组的有多少人?
9.甲乙两地相距100千米,一辆汽车行了全程的,行了多少千米?
10.一本200页的书,慧慧第一天看了,第二天看了,慧慧这两天一共看了多少页?
11.张老师到超市买了一套衣服,其中裤子12元,________________________,上衣多少钱?(根据线段图,将题中的信息补充完整,并列式解答。)
12.三个同学跳绳。小明跳了180下,小强跳的下数是小明跳的,小亮跳的下数是小强跳的。小亮跳了多少下?
13.《庄子•天下篇》中有一句话:“一尺之梗,日取其半,万世不竭。”意思就是:一根一尺(尺,中国古代长度单位)长的木棒,今天取它的一半,即,明天取它一半的一半,后天取它一半的一半的一半……这样取下去,永远也取不完。这根木棒是一个长度有限的物体,但它却可以无限地分割下去。假如一根木棒刚好长4米,照这样的取法,第4天取的长度是多少米?
14.小红有48枚邮票,小新的邮票数是小红的,小明的邮票数是小新的,小明有多少枚邮票?
15.动物园里,大熊猫的寿命为20年,野兔的寿命只有大熊猫的,长颈鹿的寿命是野兔的,长颈鹿的寿命是多少年?
16.植树队准备种1200棵树,第一天种了总数的,第二天种的棵数是第一天的,第二天种了多少棵树?
17.校园里有杨树20棵,柳树是杨树的,槐树是柳树的。槐树有多少棵?
18.爷爷今年70岁,爸爸的年龄是爷爷的,我的年龄恰巧是爸爸的。我今年多少岁?
19.某小学举行“我为小伙伴”捐书活动,四年级学生捐书1200本,六年级捐书数是四年级的,五年级的捐书数是六年级的,五年级捐书多少本?
20.奶奶买了60米长的彩带,用总长的做了中国结,用总长的做了蝴蝶结,这条彩带一共用了多少米?
21.有一个1公顷的土地,计划种植大豆,剩下的按2 :3的比例种植玉米和花生,玉米和花生的种植面积各是多少平方米?
22.为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵。五、六年级分别种植了多少棵?
23.修一条公路,已经修完了全程的 ,又修了剩余的 ,这时距终点还有6千米,这条公路全长多少千米.
24.某校六年级学生在青少年科技活动中心参加机器人竞赛,分成甲、乙两个组,甲、乙两组人数比是7∶8,如果从乙组调8人到甲组,则甲、乙两组的人数比是5∶4,参加机器人比赛的一共多少人?
25.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占,后来又来了几名女生?
26.修一段公路, 甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。求这段公路长多少米?
27.有一条线段AB,以端点A为起点量出全长的在线段上做记号M,以端点B为起点量出全长的在线段上做记号N。如果M和N之间的长度是14cm,那么整条线段AB的长度是多少?
28.育英小学六年级的原有学生中,男生占。后来又转来12名男生,这时男生人数占六年级总数的。六年级原有学生多少人?
29.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
30.某项工程,甲单独做需要30天完成,乙单独做需要20天完成。现在由甲、乙两队合作,中途甲队退出,余下的工程由乙队又做了5天才完成任务。如果做完这项工程共得工程款9000元,问甲队能得工程款多少元?
31.客、货两车分别从甲、乙两地同时相向而行,相遇时客车与货车所行路程比是7∶4。已知,客车从甲地行驶到乙地需要8小时,货车每小时48km。甲、乙两地相距多少千米?
32.在新农村的建设中,小强到修路现场做调查。他问工人叔叔要修的路有多长,工人叔叔说:“已经修好的和还没修的长度的比是2∶5,再修450米,已经修好的和还没修的长度的比是1∶2”,要修的路总长多少米?
33.张丽同学看一本童话书,已看页数与未看页数的比是1∶5,如果再看60页,已看的页数就占总页数的一半。这本童话书共多少页?
34.某学校六年级加入公益活动和没加入公益活动的人数之比是8∶5,后来又有20名学生参与进来,这时参与公益活动与没参与的人数之比是10∶3,这个年级有多少名学生?
35.从甲地到乙地,客车只需要4小时,从乙地到甲地,货车需要5小时。现在两车同时从甲乙两地出发相向而行。
(1)两车相遇需要多少小时?并在图上表示相遇的大致位置。
(2)2小时后两车相距20千米,甲乙两地相距多少千米?
36.甲、乙两人合作制造完成了一批零件,甲乙两人制造零件个数比是4∶3,其中甲制造完成全部零件的还多6个,那么乙制造了多少个零件?
37.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有40千米。已知货车和客车的速度比是5∶7,甲、乙两地相距多少千米?
38.甲、乙两个仓库共同储存一批粮食,甲仓库储存的粮食比这批粮食的多10t,乙仓库储存的粮食比这批粮食的少2t,这批粮食一共有多少吨?
39.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
40.幸福里小学上学期六年级女生人数是男生的,下学期转来3名女生,这时女生人数是男生人数的。阳光小学下学期六年级男生比女生多多少人?
41.为了丰富课后服务的活动内容,某校准备开设民乐社团。为了了解学生的喜好情况,学校对部分学生进行了调查,并制作了两个不完整的统计图,请完成以下问题。
(1)这次调查的人数一共有( )人。
(2)请把条形统计图和扇形统计图补充完整。
(3)如果学校有1500人,参加古筝社团有多少人?
42.读图填空。
(1)科技书占图书总数的( )%。
(2)六年级5班文艺书、连环画、故事书三种书的数量的最简整数比是( )∶( )∶( )。
(3)如果六年级5班共有图书400本,那么班里的动漫书比连环画少几本?
43.五年级学生举行“最爱吃的水果”投票活动(每人均有投票,且只能投1种水果),结果如图。
(1)如果从五年级学生中随意抽取一人,这人最爱吃的水果是( )的可能性最大;
(2)如果五年级学生中最爱吃香蕉和葡萄的同学共有78人,那么五年级一共有学生多少人?
44.移动手机支付快捷高效。为了解人们平时最喜欢哪种支付方式,某APP软件公司在某步行街对行人使用的支付方式进行随机抽样调查。(每人选择1项)
(1)这次调查的总人数是( )人。
(2)请补全条形统计图。
(3)微信支付占总人数的( )%。
(4)最喜欢用支付宝和微信支付的比最喜欢用银行卡支付的多( )人。
45.某地六月份的天气情况如图,请根据图中的信息解答下列问题。
(1)本月雨天的天数占全月天数的( )%。
(2)本月的晴天比雨天多多少天?
46.阳光文具店举行元旦促销活动,A、B、C三种品牌的书包在这次促销活动中共计获得利润1200元。每卖一个书包获得的利润以及销售数量情况如下:
品牌
A
B
C
利润(元/个)
24
15
45
(1)在这次促销活动中B品牌书包一共销售了多少个?
(2)如图是三种品牌书包利润占比统计图,请在图中相应的括号里填上A、B、C。
(3)对于接下来书包的进货,你有什么建议?为什么?
47.如图是某小学六年级学生的视力情况统计图。
(1)近视人数占全年级学生人数的______%,视力不良(包括假性近视和近视)的人数占全年级学生人数的______%。
(2)视力正常的有102人,六年级共有多少人?视力不良的有多少人?
(3)通过上面两小题,面对这个学校六年级学生的视力状况,你有什么想法和好的建议?
48.为了增加百姓的活动空间,某社区准备新建一个口袋公园,下面是口袋公园的平面设计图,空白部分为活动区域(4个完全相同的扇形),阴影部分为绿植区域。
(1)在保证活动区域和绿植面积不变的情况下,还可以有不同的设计方案,请你在图二的正方形中用圆规画出你的新设计图,并将绿植区域涂上阴影。
(2)求出绿植部分的面积。
(3)在图二中再画一个圆心角是60°的扇形。
49.如图,把3根横截面直径都是20厘米的圆木用铁丝紧紧地捆在一起,捆一圈(接头不计)。至少需要铁丝多少厘米?
50.如图,一个半径为10厘米的圆沿图中“凸”字形的内壁滚动“凸”字形的一圈又回到原地。圆扫过的面积是多少平方厘米?(单位:厘米)
51.乘坐空调公交车每人每次需投币2元,如果刷IC卡,则每次扣费1.8元。刷IC卡比投币便宜了百分之几?
52.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。(如图所示)
(1)填写下列表格。想一想,这些数量之间有什么关系?
大正方形每边的块数
3
黑瓷砖块数
8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
53.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是( )。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
54.请在横线上画出第4幅图,并算出第4幅图有多少个正方形。
55.观察算式的规律:,,,,……。用含字母的式子表示规律:( )。
用规律计算:( )。
56.想一想,画一画,这样的4张桌子连在一起共可以坐多少人?n张呢?
57.用同样长的小棒摆正方形,如图:
(1)填一填。(每空1分,共2分)
正方形个数
1
2
3
4
5
…
小棒根数
1+3×1
1+3×2
1+3×3
…
(2)这样摆7个正方形,需要多少根小棒?
(3)现有31根小棒,能摆多少个这样的正方形?
58.下面的算式是按照某种规律排列的∶
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…
(1)第13个算式的得数是多少?
(2)第2019个算式是什么?
59.一张正方形桌子可以围坐4人,同学们吃饭时把正方形桌子拼成一排,每张不留空位.(如图所示)
(1)20人吃饭需要多少张桌子拼在一起才能正好坐下?
(2)10张桌子这样拼成一排,可坐多少人?
(3)发现规律.
多摆1个□,就多出2个〇.如果有n个□,那么一共有2+ 个〇.
60.仔细观察表3,完成下列问题。
(1)小爱同学设计了一个由方格组成的圈数工具(如图1所示),在数表里圈了两组数(数表中的阴影部分)。请你从中任选一组求这6个数的和。列式并写出计算过程。
(2)如果小爱用这个圈数工具在数表中任意地圈数,请用含有字母与的等式表示这两个数之间的关系(与的位置如图2)。
(3)请你设计一个新的圈数工具在上面数表中圈数(圈数工具的方格与方格之间必须有连接的点或边),使它圈出的5个数之和是其中一个数(a)的5倍。在下面的方格图里画图表示,每个工具都要在相应的方格里写上。至少设计出6种圈数工具。(与图例重复不得分。)
61.一件衣服按目前的定价出售可以盈利30%,如果降价80元之后再出售则能盈利10%,这件衣服的进价是多少元?
62.读书节时小明看一本故事书。第一天看了45页,第二天看了全书的,第三天看了全书的20%,这本书一共有多少页?
63.新星希望小学为了建设书香校园,从图书超市购进了科技类丛书400套,比购进的故事类丛书多,购进的连环画册又是购进故事类丛书的75%,学校购进多少套连环画册?
64.修路队修一段路,第一天修了这段路全长的45%,第二天修了这段路全长的。
(1)两天共修了510米,这段路全长多少米?
(2)第一天比第二天多修30米,这段路全长多少米?
65.甲、乙两车同时从A、B两地相向而行,甲车行了全程的,乙车行的与全程的比是,此时甲车比乙车正好多行5千米,A、B两地相距多少千米?
66.为实现村村通公路计划,某政府决定从甲村到乙村修一条乡村公路。第一个月修了全长的20%,第二个月修了全长的,还剩下810米没修,这条乡村公路有多长?
67.一瓶洗衣液,第一周用了总量的,第二周用了总量的20%,还剩2.2升,这瓶洗衣液原有多少升?
68.夏天天气炎热,人们都喜欢买西瓜来消暑解渴。“果色天香”水果店运进一批西瓜,第一天卖出的西瓜与剩下的西瓜的比是,如果再卖出360千克,就还剩下这批西瓜的。水果店运进的这批西瓜有多少千克?
69.目前,我国大部分城镇生活垃圾中,厨余垃圾约占。某镇引进厨余垃圾处理设备,集中借助生物技术处理厨余垃圾,其中10%可转化为有机肥料。某镇每天大约产生16.5吨生活垃圾,可以转化出多少吨有机肥料?
70.通过计算并观察①②③小题,猜想出④的结果,写出你的发现,并用图形进行说明。
①
②+
③…
则:④
发现:____________________________________________________
说明:
【参考答案】
1.3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点
解析:3千米
【解析】
将小刚跑的距离看作单位“1”,小震跑的占,将小震跑的距离看作单位“1”,小涛跑的占,用小刚跑的距离×小震跑的对应分率×小涛跑的对应分率=小涛跑的距离。
答:小涛跑了3千米。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:2
解析:六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:240×=40(人)
因为48人>40人,所以六(1)班的人数多。
48-40=8(人)
答:六(1)班的人数多,多8人。
【点睛】
利用分数乘法求出两班的人数是解答题目的关键。
3.米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=
解析:米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=(米)
答:第二天修了米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
4.千克;72千克
【解析】
每人每学期节约纸的质量=每减少一本新教材减少的耗纸量×每人每学期重复适用教材的数量;
全班每学期一共节约纸的质量=每人每学期节约纸的质量×班级总人数;据此解答。
(千克)
解析:千克;72千克
【解析】
每人每学期节约纸的质量=每减少一本新教材减少的耗纸量×每人每学期重复适用教材的数量;
全班每学期一共节约纸的质量=每人每学期节约纸的质量×班级总人数;据此解答。
(千克)
(千克)
答:每人每学期可以节约千克纸,全班每学期一共可以节约72千克纸。
【点睛】
掌握分数乘法的计算方法是解答题目的关键。
5.144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没
解析:144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没有看。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
6.40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(23
解析:40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(238+2)—(238+2)
=240-240
=240—200
=40(人)
答:现在五年级比六年级少40人。
【点睛】
此题考查的是分数乘法的应用,完成本题关键是根据题意求出现在六年级的人数。
7.20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出
解析:20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出第二天看了的页数。
(页)
答:明明第二天看了20页。
【点睛】
此题的解题关键是根据题意,找到其中的单位“1”,利用它们之间的数量关系,列式求出答案。
8.36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数
解析:36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数乘分数的意义及应用。
9.80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,
解析:80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
10.90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:
解析:90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:慧慧这两天一共看了90页。
【点睛】
此题的解题关键是掌握求一个数的几分之几是多少的计算方法。
11.上衣价格比裤子贵;15元
【解析】
看图,上衣价格比裤子贵,据此利用乘法求出上衣多少钱即可。
张老师到超市买了一套衣服,其中裤子12元,上衣价格比裤子贵,上衣多少钱?
12×(1+)
=12×
=1
解析:上衣价格比裤子贵;15元
【解析】
看图,上衣价格比裤子贵,据此利用乘法求出上衣多少钱即可。
张老师到超市买了一套衣服,其中裤子12元,上衣价格比裤子贵,上衣多少钱?
12×(1+)
=12×
=15(元)
答:上衣15元。
【点睛】
本题考查了分数乘法,求比一个数多几分之几的数是多少,用乘法。
12.100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答
解析:100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答:小亮跳了100下。
【点睛】
熟练掌握分数乘法的意义(求一个数的几分之几是多少,用“这个数×几分之几”)是解答本题的关键。
13.米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
解析:米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
14.30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
解析:30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
15.28年
【解析】
将大熊猫寿命看作单位“1”,大熊猫寿命×野兔寿命的对应分率×长颈鹿寿命的对应分率=长颈鹿寿命,据此列式解答。
20××=28(年)
答:长颈鹿的寿命是28年。
【点睛】
关键是确定
解析:28年
【解析】
将大熊猫寿命看作单位“1”,大熊猫寿命×野兔寿命的对应分率×长颈鹿寿命的对应分率=长颈鹿寿命,据此列式解答。
20××=28(年)
答:长颈鹿的寿命是28年。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
16.600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,
解析:600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
17.12棵
【解析】
杨树20棵,柳树是杨树的,根据分数乘法的意义可知,柳树有20×棵,槐树是柳树的,则槐树有20××棵。
20××=12(棵)
答:槐树有12棵。
【点睛】
求一个数的几分之几是多少,
解析:12棵
【解析】
杨树20棵,柳树是杨树的,根据分数乘法的意义可知,柳树有20×棵,槐树是柳树的,则槐树有20××棵。
20××=12(棵)
答:槐树有12棵。
【点睛】
求一个数的几分之几是多少,用乘法。
18.12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练
解析:12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练掌握求一个数的几分之几是多少的解题方法,是解答此题的关键。
19.720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解
解析:720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
20.57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米
解析:57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米数。
60×+60×
=12+45
=57(米)
答:这条彩带一共用了57米。
【点睛】
明确求一个数的几分之几是多少,用乘法计算。
21.玉米: 2400平方米 花生: 3600平方米
【解析】
1公顷=10000(平方米)玉米:10000×(1 - )× = 2400(平方米)
花生:10000×(1 - )×
解析:玉米: 2400平方米 花生: 3600平方米
【解析】
1公顷=10000(平方米)玉米:10000×(1 - )× = 2400(平方米)
花生:10000×(1 - )× = 3600(平方米)
22.五年级:24棵;六年级:32棵
【解析】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵。
解析:五年级:24棵;六年级:32棵
【解析】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵。
23.10千米
【解析】
6÷[1﹣ ﹣(1﹣ )× ]
=6÷( ﹣ × )
=6÷( ﹣ )
=6÷
=10(千米)
答:这条公路全长是10千米.
解析:10千米
【解析】
6÷[1﹣ ﹣(1﹣ )× ]
=6÷( ﹣ × )
=6÷( ﹣ )
=6÷
=10(千米)
答:这条公路全长是10千米.
24.90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
解析:90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
25.12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学
解析:12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。
原来男生人数:
(名)
后来学生总数:
(名)
(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
26.16500米
【解析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这
解析:16500米
【解析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
1÷()
=1÷
=(天)
750×2÷()
=1500÷()
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
27.30cm
【解析】
本题可看作为重叠问题;以B为端点引出的占全长的线段BN,与以A为端点引出的占全长的线段AM,这两段线段的和就相当于在原线段的基础之上多了MN这一段;所以,线段MN所占的分率就是,
解析:30cm
【解析】
本题可看作为重叠问题;以B为端点引出的占全长的线段BN,与以A为端点引出的占全长的线段AM,这两段线段的和就相当于在原线段的基础之上多了MN这一段;所以,线段MN所占的分率就是,因为这个分率所对应的长度是14cm,因此要求出整条线段AB的长度,就列式为:。
方法一:
方法二:
解:设全长为xcm。
答:整条线段AB的长度是30cm。
【点睛】
可通过画线段图的方法,数形结合可使题意更加直观具体;且能够灵活地把AM、BN、MN几条线段适当地从原线段AB中分离出来,运用重叠问题的原理来解答。
28.288人
【解析】
设六年级原有学生x人,根据原有人数×男生对应分率+转来的男生人数=现在总人数×现在男生对应分率,列出方程解答即可。
解:设六年级原有学生x人。
x+12=(x+12)×
x+12
解析:288人
【解析】
设六年级原有学生x人,根据原有人数×男生对应分率+转来的男生人数=现在总人数×现在男生对应分率,列出方程解答即可。
解:设六年级原有学生x人。
x+12=(x+12)×
x+12=x+
x-x=12-
x×60=×60
x=288
答:六年级原有学生288人。
【点睛】
用方程解决问题的关键是找到等量关系。
29.174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
解析:174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
30.2700元
【解析】
由题意可知,把这项工程看作单位“1”,甲单独做每天完成这项工程的,乙单独做每天完成这项工程的,乙队单独做了5天,完成了这项工程的×5=,由甲、乙两队合作完成的占总工程的1-=,
解析:2700元
【解析】
由题意可知,把这项工程看作单位“1”,甲单独做每天完成这项工程的,乙单独做每天完成这项工程的,乙队单独做了5天,完成了这项工程的×5=,由甲、乙两队合作完成的占总工程的1-=,合作的天数=÷(+)=9(天);甲队完成的工作量是:×9=,则甲也应得工程款的,用9000×;据此解答。
甲乙合作的天数:
(1-×5)÷(+)
=(1-)÷
=×12
=9(天)
甲队完成的工作量:×9=
甲应得工程款:9000×=2700(元)
答:甲队能得工程款2700元。
【点睛】
本题体现了数量关系式:工效之和×合作时间=工作总量;解答此题的关键是理解甲队完成了工作总量的几分之几,他应得的工程款也是总工程款的几分之几。
31.672千米
【解析】
由题意可知,在相同时间内,客车与货车所行路程比等于两车的速度比,已知货车每小时行驶48千米,那么客车每小时行驶的速度是货车速度的,根据一个数乘分数的意义,用乘法求出客车的速度,
解析:672千米
【解析】
由题意可知,在相同时间内,客车与货车所行路程比等于两车的速度比,已知货车每小时行驶48千米,那么客车每小时行驶的速度是货车速度的,根据一个数乘分数的意义,用乘法求出客车的速度,据此可解答。
48×=84(千米∕时)
84×8=672(千米)
答:甲、乙两地相距672千米。
【点睛】
本题考查路程问题和比的关系,掌握比的意义时解题的关键。
32.9450米
【解析】
根据两个已经修好的和还没修的长度的比,再修450米前,修好的占总长度的,再修450米后,修好的占总长度的,前后相差-,相差450米,用450米÷对应分率=路的总长。
450÷(
解析:9450米
【解析】
根据两个已经修好的和还没修的长度的比,再修450米前,修好的占总长度的,再修450米后,修好的占总长度的,前后相差-,相差450米,用450米÷对应分率=路的总长。
450÷(-)
=450÷(-)
=450÷
=9450(米)
答:要修的路总长9450米。
【点睛】
关键是理解比的意义,通过两个比确定对应分率,部分数量÷对应分率=总体数量。
33.180页
【解析】
把这本书的总页数看成单位“1”,原来已看的页数与未看的页数比是1:5,那么原来已看的页数是总页数的,后来已经看得页数是总页数的,它们的差对应的数量是60页,用除法求出总页数。
解析:180页
【解析】
把这本书的总页数看成单位“1”,原来已看的页数与未看的页数比是1:5,那么原来已看的页数是总页数的,后来已经看得页数是总页数的,它们的差对应的数量是60页,用除法求出总页数。
=
=
=
= (页)
答:这本童话书共180页。
【点睛】
本题的关键是找出单位“1”,并找出单位“1”的几分之几对应的数量,用除法就可以求出单位“1”的量。
34.130名
【解析】
总人数没变,即单位“1”没变,用20名学生÷对应分率=总人数,据此列式解答。
20÷(-)
=20÷(-)
=20÷
=130(名)
答:这个年级有130名学生。
【点睛】
关键
展开阅读全文