资源描述
全国中考数学二次函数的综合中考真题汇总附详细答案
一、二次函数
1.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当MC+MA的值最小时,求点M的坐标.
【答案】(1)抛物线的解析式为y=x﹣2,顶点D的坐标为 (,﹣);(2)△ABC是直角三角形,证明见解析;(3)点M的坐标为(,﹣).
【解析】
【分析】
(1)因为点A在抛物线上,所以将点A代入函数解析式即可求得答案;
(2)由函数解析式可以求得其与x轴、y轴的交点坐标,即可求得AB、BC、AC的长,由勾股定理的逆定理可得三角形的形状;
(3)根据抛物线的性质可得点A与点B关于对称轴x对称,求出点B,C的坐标,根据轴对称性,可得MA=MB,两点之间线段最短可知,MC+MB的值最小.则BC与直线x交点即为M点,利用得到系数法求出直线BC的解析式,即可得到点M的坐标.
【详解】
(1)∵点A(﹣1,0)在抛物线ybx﹣2上,∴b×(﹣1)﹣2=0,解得:b,∴抛物线的解析式为yx﹣2.
yx﹣2(x2﹣3x﹣4 ),∴顶点D的坐标为 ().
(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.
当y=0时,x﹣2=0,∴x1=﹣1,x2=4,∴B (4,0),∴OA=1,OB=4,AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.
(3)∵顶点D的坐标为 (),∴抛物线的对称轴为x.
∵抛物线yx2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x对称.
∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,yx﹣2=﹣2,则点C的坐标为(0,﹣2),则BC与直线x交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.
设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:,解得:,∴yx﹣2.
当x时,y,∴点M的坐标为().
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.
2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①.①P1(1-,-2),P2(1-,).
【解析】
【分析】
已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据∠BCO的正切值求出OB的长,即可得出B点的坐标.已知了△AOC和△BOC的面积比,由于两三角形的高相等,因此面积比就是AO与OB的比.由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式.
【详解】
(1)∵抛物线的对称轴为直线x=1,
∴−=1
∴b=-2
∵抛物线与y轴交于点C(0,-3),
∴c=-3,
∴抛物线的函数表达式为y=x2-2x-3;
(2)∵抛物线与x轴交于A、B两点,
当y=0时,x2-2x-3=0.
∴x1=-1,x2=3.
∵A点在B点左侧,
∴A(-1,0),B(3,0)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,
则,
∴
∴直线BC的函数表达式为y=x-3;
(3)①∵AB=4,PQ=AB,
∴PQ=3
∵PQ⊥y轴
∴PQ∥x轴,
则由抛物线的对称性可得PM=,
∵对称轴是直线x=1,
∴P到y轴的距离是,
∴点P的横坐标为−,
∴P(−,−)
∴F(0,−),
∴FC=3-OF=3-=
∵PQ垂直平分CE于点F,
∴CE=2FC=
∵点D在直线BC上,
∴当x=1时,y=-2,则D(1,-2),
过点D作DG⊥CE于点G,
∴DG=1,CG=1,
∴GE=CE-CG=-1=.
在Rt△EGD中,tan∠CED=.
②P1(1-,-2),P2(1-,-).
设OE=a,则GE=2-a,
当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),
∴1=1×(2-a),
∴a=1,
∴CE=2,
∴OF=OE+EF=2
∴F、P的纵坐标为-2,
把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1-
∵点P在第三象限.
∴P1(1-,-2),
当CD为斜边时,DE⊥CE,
∴OE=2,CE=1,
∴OF=2.5,
∴P和F的纵坐标为:-,
把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+,
∵点P在第三象限.
∴P2(1-,-).
综上所述:满足条件为P1(1-,-2),P2(1-,-).
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
3.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由.
(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.
(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.
【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<时,y1>y2,②当b=时,y1=y2,③当<b<时,y1<y2.
【解析】
【分析】
(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;
(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;
(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.
【详解】
(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,
∴M的坐标是(b,4b+1),
把x=b代入y=4x+1,得y=4b+1,
∴点M在直线y=4x+1上;
(2)如图1,
直线y=mx+5交y轴于点B,
∴B点坐标为(0,5)又B在抛物线上,
∴5=﹣(0﹣b)2+4b+1=5,解得b=2,
二次函数的解析是为y=﹣(x﹣2)2+9,
当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,
∴A(5,0).
由图象,得
当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;
(3)如图2,
∵直线y=4x+1与直线AB交于点E,与y轴交于F,
A(5,0),B(0,5)得
直线AB的解析式为y=﹣x+5,
联立EF,AB得方程组,
解得,
∴点E(,),F(0,1).
点M在△AOB内,
1<4b+1<,
∴0<b<.
当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,
且二次函数图象开口向下,顶点M在直线y=4x+1上,
综上:①当0<b<时,y1>y2,
②当b=时,y1=y2,
③当<b<时,y1<y2.
【点睛】
本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.
4.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).
【解析】
【分析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.
(3)△COB沿x轴向右平移过程中,分两个阶段:
①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;
②当<t<3时,如答图3所示,此时重叠部分为一个三角形.
【详解】
解:(Ⅰ)∵点在抛物线上,
∴,得
∴抛物线解析式为:,
令,得,∴;
令,得或,∴.
(Ⅱ)为直角三角形.理由如下:
由抛物线解析式,得顶点的坐标为.
如答图1所示,过点作轴于点M,
则,,.
过点作于点,则,.
在中,由勾股定理得:;
在中,由勾股定理得:;
在中,由勾股定理得:.
∵,
∴为直角三角形.
(Ⅲ)设直线的解析式为,
∵,
∴,
解得,
∴,
直线是直线向右平移个单位得到,
∴直线的解析式为:;
设直线的解析式为,
∵,
∴,解得:,
∴.
连续并延长,射线交交于,则.
在向右平移的过程中:
(1)当时,如答图2所示:
设与交于点,可得,.
设与的交点为,则:.
解得,
∴.
.
(2)当时,如答图3所示:
设分别与交于点、点.
∵,
∴,.
直线解析式为,令,得,
∴.
.
综上所述,与的函数关系式为:.
5.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
【答案】(1)y=-+x+2;(2)存在,Q(3,2)或Q(-1,0);(3)两个和谐点,A1的横坐标是1,.
【解析】
【分析】
(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;
(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q点的坐标.
(3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),
①当A1、C1在抛物线上时,A1的横坐标是1;
当O1、C1在抛物线上时,A1的横坐标是2;
【详解】
解:(1)设抛物线解析式为y=ax2+bx+c,
将点A(-1,0),B(4,0),C(0,2)代入解析式,
∴,
∴,
∴y=-+x+2;
(2)∵点C与点D关于x轴对称,
∴D(0,-2).
设直线BD的解析式为y=kx-2.
∵将(4,0)代入得:4k-2=0,
∴k=.
∴直线BD的解析式为y=x-2.
当P点与A点重合时,△BQM是直角三角形,此时Q(-1,0);
当BQ⊥BD时,△BQM是直角三角形,
则直线BQ的直线解析式为y=-2x+8,
∴-2x+8=-+x+2,可求x=3或x=4(舍)
∴x=3;
∴Q(3,2)或Q(-1,0);
(3)两个和谐点;
AO=1,OC=2,
设A1(x,y),则C1(x+2,y-1),O1(x,y-1),
①当A1、C1在抛物线上时,
∴,
∴,
∴A1的横坐标是1;
当O1、C1在抛物线上时,
,
∴,
∴A1的横坐标是;
【点睛】
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.
6.已知,抛物线y=x2+2mx(m为常数且m≠0).
(1)判断该抛物线与x轴的交点个数,并说明理由.
(2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.
(3)若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.
【答案】(1)抛物线与x轴有2个交点,理由见解析;(2)△ABM的面积为8;(3)m的取值范围m>-2.5
【解析】
【分析】
(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;
(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;
(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 p<g<r 即可列出关于m的不等式组,求解即可。
【详解】
(1)解:抛物线与x轴有2个交点。理由如下:
∵m≠0,∴b2-4ac =(2m)2-4×1×0=4m2>0.
∴抛物线与x轴有2个交点
(2)解:∵点A(-n+5,0),B(n-1,0)在抛物线上
∴抛物线的对称轴x=
∴ =2,即m=-2.
∴抛物线的表达式为y=x2-4x.
∴点A(0,0),点B(4,0)或点A(4,0),点B(0,0),点M(2,-4)
∴△ABM的面积为×4×4=8
(3)解:方法一(图象法):
∵抛物线y=x2+2mx的对称轴为x=-m,开口向上。
∴当对称轴在直线x=3的右边时,显然不符合题目条件(如图1).
当对称轴在直线x=2的左边时,显然符合题目条件(如图2).
此时,-m<2,即m>-2.
当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3).
即m>-2.5.
综上所述,m的取值范围m>-2.5
方法二(代数法):
由已知得,p=4+4m,g=9+6m,r=16+8m.
∵p<q<r, ∴4+4m<9+6m<16+8m,解得m>-2.5.
【点睛】
二次函数的综合应用题。与X轴交点的情况当△=b2-4ac>0时,函数图像与x轴有两个交点。当△=b2-4ac=0时,函数图像与x轴只有一个交点。Δ=b2-4ac<0时,抛物线与x轴没有交点。熟练运用顶点坐标(-,)
7.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.
【解析】
分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;
(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;
(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.
详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),
∴,
解得:,
所以二次函数的解析式为:y=;
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,
过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,
设D(m,),则点F(m,),
∴DF=﹣()=,
∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH
=×DF×AG+×DF×EH
=×4×DF
=2×()
=,
∴当m=时,△ADE的面积取得最大值为.
(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:
当PA=PE时,=,解得:n=1,此时P(﹣1,1);
当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);
当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).
综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).
点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.
8.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(2≤x≤10,单位:吨)之间的函数关系如图所示.
(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?
(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)
(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是y=x+3(2≤x≤10).
①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?
②该公司买入杨梅吨数在 范围时,采用深加工方式比直接包装销售获得毛利润大些?
【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x=8时,此时W最大值=40万元;(3)①该公司买入杨梅3吨;②3<x≤8.
【解析】
【分析】
(1)设其解析式为y=kx+b,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;
(2)根据题意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,根据二次函数的性质即可得到结论;
(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论.
【详解】
(1)由图象可知,y是关于x的一次函数.
∴设其解析式为y=kx+b,
∵图象经过点(2,12),(8,9)两点,
∴,
解得k=﹣,b=13,
∴一次函数的解析式为y=﹣x+13,
当x=6时,y=10,
答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;
(2)根据题意得,w=(y﹣4)x=(﹣x+13﹣4)x=﹣x2+9x,
当x=﹣=9时,x=9不在取值范围内,
∴当x=8时,此时W最大值=﹣x2+9x=40万元;
(3)①由题意得:﹣x2+9x=9x﹣(x+3)
解得x=﹣2(舍去),x=3,
答该公司买入杨梅3吨;
②当该公司买入杨梅吨数在 3<x≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.
故答案为:3<x≤8.
【点睛】
本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.
9.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);(3)存在,Q(﹣1,2);(4), .
【解析】
【分析】
(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;
(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:
①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.
②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).
③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;
(3)根据轴对称﹣最短路径问题解答;
(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,S四边形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在△BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.
【详解】
(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),
∴,
解得:.
∴所求抛物线解析式为:y=﹣x2﹣2x+3;
(2)如答图1,
∵抛物线解析式为:y=﹣x2﹣2x+3,
∴其对称轴为x==﹣1,
∴设P点坐标为(﹣1,a),当x=0时,y=3,
∴C(0,3),M(﹣1,0)
∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a=,
∴P点坐标为:P1(﹣1,);
∴当CM=PM时,(﹣1)2+32=a2,解得a=±,
∴P点坐标为:P2(﹣1,)或P3(﹣1,﹣);
∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,
∴P点坐标为:P4(﹣1,6).
综上所述存在符合条件的点P,其坐标为P(﹣1,)或P(﹣1,﹣)或P(﹣1,6)或P(﹣1,);
(3)存在,Q(﹣1,2),理由如下:
如答图2,点C(0,3)关于对称轴x=﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q.
设直线AC′函数关系式为:y=kx+t(k≠0).
将点A(1,0),C′(﹣2,3)代入,得,
解得,
所以,直线AC′函数关系式为:y=﹣x+1.
将x=﹣1代入,得y=2,
即:Q(﹣1,2);
(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a
∴S四边形BOCE=BF•EF+(OC+EF)•OF
=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a)
=﹣a2﹣a+=﹣(a+)2+,
∴当a=﹣时,S四边形BOCE最大,且最大值为.
此时,点E坐标为(﹣ ,).
【点睛】
本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.
10.如图,抛物线的图象过点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,点,周长为:;(3)存在,点M坐标为
【解析】
【分析】
(1)由于条件给出抛物线与x轴的交点,故可设交点式,把点C代入即求得a的值,减小计算量.
(2)由于点A、B关于对称轴:直线对称,故有,则,所以当C、P、B在同一直线上时,最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把代入即求得点P纵坐标.
(3)由可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.
【详解】
解:(1)∵抛物线与x轴交于点
∴可设交点式
把点代入得:
∴抛物线解析式为
(2)在抛物线的对称轴上存在一点P,使得的周长最小.
如图1,连接PB、BC
∵点P在抛物线对称轴直线上,点A、B关于对称轴对称
∵当C、P、B在同一直线上时,最小
最小
设直线BC解析式为
把点B代入得:,解得:
∴直线BC:
∴点使的周长最小,最小值为.
(3)存在满足条件的点M,使得.
∵S△PAM=S△PAC
∴当以PA为底时,两三角形等高
∴点C和点M到直线PA距离相等
∵M在x轴上方
,设直线AP解析式为
解得:
∴直线
∴直线CM解析式为:
解得:(即点C),
∴点M坐标为
【点睛】
考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.
11.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。
(1)求函数y=x+2的图像上所有“中国结”的坐标;
(2)求函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;
(3)若二次函数y=(k为常数)的图像与x轴相交得到两个不同的“中国结”,试问该函数的图像与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?
【答案】(1)(0,2);(2)当k=1时,对应“中国结”为(1,1)(-1,-1);当k=-1时,对应“中国结”为(1,-1),(-1,1);(3)6个.
【解析】
试题分析:(1)因为x是整数,x≠0时,x是一个无理数,所以x≠0时,x+2不是整数,所以x=0,y=2,据此求出函数y=x+2的图象上所有“中国结”的坐标即可.
(2)首先判断出当k=1时,函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”:(1,1)、(﹣1、﹣1);然后判断出当k≠1时,函数y=(k≠0,k为常数)的图象上最少有4个“中国结”,据此求出常数k的值与相应“中国结”的坐标即可.
(3)首先令(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=0,则[(k﹣1)x+k][(k﹣2)x+(k﹣1)]=0,求出x1、x2的值是多少;然后根据x1、x2的值是整数,求出k的值是多少;最后根据横坐标,纵坐标均为整数的点称之为“中国结”,判断出该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”即可.
试题解析:(1)∵x是整数,x≠0时,x是一个无理数,
∴x≠0时,x+2不是整数,
∴x=0,y=2,
即函数y=x+2的图象上“中国结”的坐标是(0,2).
(2)①当k=1时,函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”:
(1,1)、(﹣1、﹣1);
②当k=﹣1时,函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”:
(1,﹣1)、(﹣1,1).
③当k≠±1时,函数y=(k≠0,k为常数)的图象上最少有4个“中国结”:
(1,k)、(﹣1,﹣k)、(k,1)、(﹣k,﹣1),这与函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”矛盾,
综上可得,k=1时,函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”:(1,1)、(﹣1、﹣1);
k=﹣1时,函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”:(1,﹣1)、(﹣1、1).
(3)令(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=0,
则[(k﹣1)x+k][(k﹣2)x+(k﹣1)]=0,
∴
∴,
整理,可得
x1x2+2x2+1=0,
∴x2(x1+2)=﹣1,
∵x1、x2都是整数,
∴或
∴或
①当时,
∵,
∴k=;
②当时,
∵,
∴k=k﹣1,无解;
综上,可得
k=,x1=﹣3,x2=1,
y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k
=[()2﹣3×+2]x2+[2×()2﹣4×+1]x+()2﹣
=﹣x2﹣x+
①当x=﹣2时,
y=﹣x2﹣x+=﹣×(﹣2)2﹣×(﹣2)+
=
②当x=﹣1时,
y=﹣x2﹣x+
=﹣×(﹣1)2﹣×(﹣1)+
=1
③当x=0时,y=,
另外,该函数的图象与x轴所围成的平面图形中x轴上的“中国结”有3个:
(﹣2,0)、(﹣1、0)、(0,0).
综上,可得
若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,
该函数的图象与x轴所围成的平面图形中(含边界),一共包含有6个“中国结”:(﹣3,0)、(﹣2,0)、(﹣1,0)(﹣1,1)、(0,0)、(1,0).
考点:反比例函数综合题
12.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.
【答案】(1);(2)C(3,0),D(1,﹣4),△BCD是直角三角形;(3)
【解析】
试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;
(2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论;
(3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可.
试题解析:解(1)∵,∴,,∵m,n是一元二次方程的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线的图象经过点A(m,0),B(0,n),∴,∴,∴抛物线解析式为;
(2)令y=0,则,∴,,∴C(3,0),∵=,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;
(3)如图,∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1.
①当点P在点M上方时,即0<t<3时,PM=t﹣3﹣()=,∴S=PM×QF==,②如图3,当点P在点M下方时,即t<0或t>3时,PM=﹣(t﹣3)=,∴S=PM×QF=()=.
综上所述,S=.
考点:二次函数综合题;分类讨论.
13.如图所示抛物线过点,点,且
(1)求抛物线的解析式及其对称轴;
(2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;
(3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
【答案】(1),对称轴为直线;(2)四边形的周长最小值为;(3)
【解析】
【分析】
(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,即可求解;
(2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;
(3)S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,即可求解.
【详解】
(1)∵OB=OC,∴点B(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,
故-3a=3,解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3…①;
对称轴为:直线
(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,
故CD+AE最小时,周长最小,
取点C关于函数对称点C(2,3),则CD=C′D,
取点A′(-1,1),则A′D=AE,
故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE的周长的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为3:5两部分,
又∵S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,
则BE:AE,=3:5或5:3,
则AE=或,
即:点E的坐标为(,0)或(,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,
解得:k=-6或-2,
故直线CP的表达式为:y=-2x+3或y=-6x+3…②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,-5)或(8,-45).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点
展开阅读全文