资源描述
人教版七7年级下册数学期末复习试卷(及答案)
一、选择题
1.的平方根是()
A. B. C. D.
2.下列图案可以由部分图案平移得到的是( )
A. B. C. D.
3.平面直角坐标系中,点在( )
A.x轴的正半轴 B.x轴的负半轴 C.y轴的正半轴 D.y轴的负半轴
4.下列命题中假命题有( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行
③点到直线的垂线段叫做点到直线的距离
④过一点有且只有一条直线与已知直线平行
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个 B.4个 C.3个 D.2个
5.如图,直线,被直线所截,,,则的度数为( ).
A.40° B.60° C.45° D.70°
6.若,则x和y的关系是( ).
A.x=y=0 B.x和y互为相反数
C.x和y相等 D.不能确定
7.一副直角三角板如图所示摆放,它们的直角顶点重合于点,,则( )
A. B. C. D.
8.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2)把一根长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是( )
A.(1,0) B.(0,1) C.(﹣1,1) D.(﹣1,﹣2)
九、填空题
9.______.
十、填空题
10.平面直角坐标系中,点关于y轴的对称点的坐标为________.
十一、填空题
11.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ADB=__度.
十二、填空题
12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.
十三、填空题
13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___.
十四、填空题
14.将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是___
十五、填空题
15.点到两坐标轴的距离相等,则________.
十六、填空题
16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____
十七、解答题
17.计算下列各式的值:
(1)
(2)
十八、解答题
18.求下列各式中的的值:
(1);
(2).
十九、解答题
19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:.
证明:
∵(已知)
∴(_______________)
又∵(已知)
∴(______________)
∴(_____________)
∴(______________)
二十、解答题
20.在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.
(1)将△ ABC先向下平移2个单位长度,再向右平移5个单位长度得到△ A1B1C1,画出△ A1B1C1.
(2)求△ A1B1C1的面积.
二十一、解答题
21.(阅读材料)
∵,即23,∴11<2,∴1的整数部分为1,∴1的小数部分为2
(解决问题)
(1)填空:的小数部分是 ;
(2)已知a是4的整数部分,b是4的小数部分,求代数式(﹣a)3+(b+4)2的值.
二十二、解答题
22.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二十三、解答题
23.综合与探究
(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动
(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;
(问题迁移)
(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,
①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.
②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.
二十四、解答题
24.已知,将一副三角板中的两块直角三角板如图1放置,,,,.
(1)若三角板如图1摆放时,则______,______.
(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;
(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数.
二十五、解答题
25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
【参考答案】
一、选择题
1.D
解析:D
【分析】
依据平方根的定义、算术平方根的定义进行解答即可.
【详解】
解:∵,
∴的平方根是;
故选D.
【点睛】
本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.
2.C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:、是旋转变换,不是平移,选项错误,不符合题意;
、轴对称变换,不是平移,选项错误,不符合题意;
、是平移,选项正确,符合题意;
、图形的大
解析:C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:、是旋转变换,不是平移,选项错误,不符合题意;
、轴对称变换,不是平移,选项错误,不符合题意;
、是平移,选项正确,符合题意;
、图形的大小发生了变化,不是平移,选项错误,不符合题意.
故选:C.
【点睛】
本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.
3.B
【分析】
根据坐标轴上点的坐标特征对点A(-1,0)进行判断.
【详解】
解:∵点A的纵坐标为0,
∴点A在x轴上,
∵点A的横坐标为-1,
∴点A在x轴负半轴上.
故选:B.
【点睛】
本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.
4.B
【分析】
根据平行线的性质和判定,点到直线距离定义一一判断即可.
【详解】
解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;
③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;
④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.
故选B.
【点睛】
本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.
5.A
【分析】
根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.
【详解】
解:如图,
∵AB∥CD,
∴∠2=∠D,
∵∠1=140°,
∴∠D=∠2=180°−∠1=180°−140°=40°,
故选:A.
【点睛】
此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6.B
【解析】
分析:先移项,再两边立方,即可得出x=-y,得出选项即可.
详解:
∵,
∴,
∴x=-y,
即x、y互为相反数,
故选B.
点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.
7.C
【分析】
由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.
【详解】
解:,
故选:.
【点睛】
本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.
8.B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(1,1),C(1,2),D(1,2),
∴四边形ABCD的周长为1
解析:B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(1,1),C(1,2),D(1,2),
∴四边形ABCD的周长为10,
2021÷10的余数为1,
又∵AB=2,
∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).
故选:B.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型.
九、填空题
9.10
【分析】
先计算乘法,然后计算算术平方根,即可得到答案.
【详解】
解:;
故答案为:10.
【点睛】
本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.
解析:10
【分析】
先计算乘法,然后计算算术平方根,即可得到答案.
【详解】
解:;
故答案为:10.
【点睛】
本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.
十、填空题
10.(3,-1)
【分析】
让纵坐标不变,横坐标互为相反数可得所求点的坐标.
【详解】
解:∵-3的相反数为3,
∴所求点的横坐标为3,纵坐标为-1,
故答案为(3,-1).
【点睛】
本题考查关于y轴
解析:(3,-1)
【分析】
让纵坐标不变,横坐标互为相反数可得所求点的坐标.
【详解】
解:∵-3的相反数为3,
∴所求点的横坐标为3,纵坐标为-1,
故答案为(3,-1).
【点睛】
本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.
十一、填空题
11.101
【分析】
直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.
【详解】
∵在△ABC中,∠A=50°,∠C=72°,
∴∠ABC=180°−50°
解析:101
【分析】
直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.
【详解】
∵在△ABC中,∠A=50°,∠C=72°,
∴∠ABC=180°−50°−72°=58°,
∵BD是△ABC的一条角平分线,
∴∠ABD=29°,
∴∠ADB=180°−50°−29°=101°.
故答案为:101.
【点睛】
此题考查三角形内角和定理,解题关键在于掌握其定理.
十二、填空题
12.36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=
解析:36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=∠EFB=72°,
又由折叠的性质可得∠D′EF=∠DEF=72°,
∴∠AED′=180°﹣72°﹣72°=36°,
故答案为:36°.
【点睛】
本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.
十三、填空题
13.59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿
解析:59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿EF折叠,
∴∠1=∠2,AD∥BC,
∴∠FGE+∠GEC=180°,
∵∠FGE=62°,
∴∠GEC=180°-62°=118°,
∴∠1=∠2=∠GEC=59°,
∵AD∥BC,
∴∠GFE=∠2,
∴∠GFE=59°.
故答案为59°.
【点睛】
本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.
十四、填空题
14.【分析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列
解析:
【分析】
根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
【详解】
(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,
∵,即1,,,中第三个数 :,
∴的相反数为
故答案为.
【点睛】
此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.
十五、填空题
15.或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距
解析:或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.
十六、填空题
16.【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后
解析:
【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同.
【详解】
解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…,
而2021=4×505+1,
所以点P2021的坐标与点P1的坐标相同,为(2,0),
故答案为:.
【点睛】
本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键.
十七、解答题
17.(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考
解析:(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)方程整理后,利用平方根定义开方即可求出x的值;
(2)方程利用立方根定义开立方即可求出x的值.
【详解】
解:(1)
,
或.
(2)
,
.
【点睛】
此题考查了
解析:(1)或;(2)
【分析】
(1)方程整理后,利用平方根定义开方即可求出x的值;
(2)方程利用立方根定义开立方即可求出x的值.
【详解】
解:(1)
,
或.
(2)
,
.
【点睛】
此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.
十九、解答题
19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
又∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
∴.(两直线平行,同旁内角互补)
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求
解析:(1)见解析;(2)
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)依据割补法进行计算,即可得到三角形ABC的面积.
【详解】
解:(1)如图所示,三角形A1B1C1即为所求;
(2)如图所示,△A1B1C1的面积==.
【点睛】
本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
二十一、解答题
21.(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<1
解析:(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<100,
∴9<<10,
∴的整数部分是9,
∴的小数部分是9;
(2)∵16<21<25,
∴4<<5,
∵a是4的整数部分,b是4的小数部分,
∴a=4﹣4=0,b4,
∴(﹣a)3+(b+4)2=0+21=21.
【点睛】
本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.
二十二、解答题
22.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二十三、解答题
23.(1);(2)①,理由见解析;②图见解析,或
【分析】
(1)作PQ∥EF,由平行线的性质,即可得到答案;
(2)①过作交于,由平行线的性质,得到,,即可得到答案;
②根据题意,可对点P进行分类讨论
解析:(1);(2)①,理由见解析;②图见解析,或
【分析】
(1)作PQ∥EF,由平行线的性质,即可得到答案;
(2)①过作交于,由平行线的性质,得到,,即可得到答案;
②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.
【详解】
解:(1)作PQ∥EF,如图:
∵,
∴,
∴,,
∵
∴;
(2)①;
理由如下:如图,
过作交于,
∵,
∴,
∴,,
∴;
②当点在延长线时,如备用图1:
∵PE∥AD∥BC,
∴∠EPC=,∠EPD=,
∴;
当在之间时,如备用图2:
∵PE∥AD∥BC,
∴∠EPD=,∠CPE=,
∴.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.
二十四、解答题
24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当B
解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.
【详解】
解:(1)作EI∥PQ,如图,
∵PQ∥MN,
则PQ∥EI∥MN,
∴∠α=∠DEI,∠IEA=∠BAC,
∴∠DEA=∠α+∠BAC,
∴α= DEA -∠BAC=60°-45°=15°,
∵E、C、A三点共线,
∴∠β=180°-∠DFE=180°-30°=150°;
故答案为:15°;150°;
(2)∵PQ∥MN,
∴∠GEF=∠CAB=45°,
∴∠FGQ=45°+30°=75°,
∵GH,FH分别平分∠FGQ和∠GFA,
∴∠FGH=37.5°,∠GFH=75°,
∴∠FHG=180°-37.5°-75°=67.5°;
(3)当BC∥DE时,如图1,
∵∠D=∠C=90,
∴AC∥DF,
∴∠CAE=∠DFE=30°,
∴∠BAM+∠BAC=∠MAE+∠CAE,
∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;
当BC∥EF时,如图2,
此时∠BAE=∠ABC=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°;
当BC∥DF时,如图3,
此时,AC∥DE,∠CAN=∠DEG=15°,
∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.
综上所述,∠BAM的度数为30°或90°或120°.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十五、解答题
25.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.
展开阅读全文