收藏 分销(赏)

南通市七年级下册末数学试卷及答案.doc

上传人:天**** 文档编号:5135564 上传时间:2024-10-26 格式:DOC 页数:30 大小:2.42MB
下载 相关 举报
南通市七年级下册末数学试卷及答案.doc_第1页
第1页 / 共30页
南通市七年级下册末数学试卷及答案.doc_第2页
第2页 / 共30页
南通市七年级下册末数学试卷及答案.doc_第3页
第3页 / 共30页
南通市七年级下册末数学试卷及答案.doc_第4页
第4页 / 共30页
南通市七年级下册末数学试卷及答案.doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、一、解答题1在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得MPQ的面积等于1,即SMPQ1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0)(1)在点A(1,2),B(1,1),C(1,2),D(2,4)中,线段OP的“单位面积点”是 ;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围 (3)已知点Q(1,2),H(0,1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若SHMNSPQN,求出点N纵坐标

2、的取值范围解析:(1),;(2)或;(3)见解析【分析】(1)分别根据三角形的面积计算OPA,DPB,DPC,OPD的面积即可;(2)分线段OP在线段EF下方和线段OP在线段EF上方分别求解;(3)画出图形,根据SPQN=1,得到SHMN,分当xN=0时,当xN=2时,分别结合SHMN,得到不等式,求出N点纵坐标的范围【详解】解:(1)SOPA=,则点A是线段OP的“单位面积点”,SOPB=,则点B不是线段OP的“单位面积点”,SOPC=,则点C是线段OP的“单位面积点”,SOPD=,则点D不是线段OP的“单位面积点”,(2)设点G是线段OP的“单位面积点”,则SOPG=1,点E的坐标为(0,

3、3),点F的坐标为(0,4),且点G在线段EF上,点G的横坐标为0,SOPG=1,线段OP为y轴向上平移t(t0)个单位长度,当为单位面积点时, 当为单位面积点时, 综上所述:1t2或5t6;(3)M,N是线段PQ的两个单位面积点,SPQM=1,SPQN=1,P(1,0),Q(1,-2),PQ=2,M,N的横坐标为0或2,点M在HQ的延长线上,点M的横坐标为xM=2,SHMNSPQN,SHMN,当xN=0时,SHMN=,则,或;当xN=2时,SHMN=,则,或【点睛】本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解2如图,A点的坐标为(0,3)

4、,B点的坐标为(3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90得线段AE,使得AEAD,且AEAD,连接BE交y轴于点M(1)如图,当点D在线段OB的延长线上时,若D点的坐标为(5,0),求点E的坐标求证:M为BE的中点探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由)解析:(1)E(3,2)见解析;,理由见解析;(2)OD+OA2AM或OAOD2AM【分析】(1)过点E作EHy轴于H证明DOAAHE(AAS)可得结论证明BOMEHM(AAS)可得结论是

5、定值,证明BOMEHM可得结论(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论【详解】解:(1)过点E作EHy轴于HA(0,3),B(3,0),D(5,0),OAOB3,OD5,AODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,DOAAHE(AAS),AHOD5,EHOA3,OHAHOA2,E(3,2)EHy轴,EHOBOH90,BMOEMH,OBEH3,BOMEHM(AAS),BMEM结论:理由:DOAAHE,ODAH,OAOB,BDOH,BOMEHM,OMMH,OMOHBD(2)结论:OA+OD2AM或OAO

6、D2AM理由:当点D在点B左侧时,BOMEHM,DOAAHEOM=MH,OD=AHOH=2OM,ODOB=AHOABD=OHBD2OM,ODOA2(AMAO),OD+OA2AM当点D在点B右侧时,过点E作EHy轴于点HAODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,AD=AEDOAAHE(AAS),EH=AO=3=OB,OD=AHEHOBOH90,BMOEMH,OBEH3,BOMEHM(AAS),OMMHOAOD= OAAH=OH=OMMH=2MH=2(AMAH)=2(AMOD)整理可得OAOD2AM综上:OA+OD2AM或OAOD2AM【点睛】此题考查的是全等三

7、角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键3如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿ABCE运动,最终到达点E设点P运动的时间为t秒(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标(2)在(1)相同条件得到的结论下,是否存在P点使APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由解析:(1)建立直角坐标系见解析,当0t4时,即当点

8、P在线段AB上时,其坐标为:P(2t,0),当4t7时,即当点P在线段BC上时,其坐标为:P(8,2t8),当7t10时,即当点P在线段CE上时,其坐标为:P(222t,6);(2)存在,当点P的坐标分别为:P(,0)或 P(8,4)时,APE的面积等于【分析】(1)建立平面直角坐标系,根据点P的运动速度分别求出点P在线段AB,BC,CE上的坐标;(2)根据(1)中得到的点P的坐标以及,分别列出三个方程并解出此时t的值再进行讨论【详解】(1)正确画出直角坐标系如下:当0t4时,点P在线段AB上,此时P点的横坐标为,其纵坐标为0;此时P点的坐标为:P(2t,0);同理:当4t7时,点P在线段BC

9、上,此时P点的坐标为:P(8,2t8);当7t10时,点P在线段CE上,此时P点的坐标为:P(222t,6)(2)存在,如图1,当0t4时,点P在线段AB上,解得:t(s);P点的坐标为:P(,0)如图2,当4t7时,点P在线段BC上,; 解得:t=6(s);点P的坐标为:P(8,4)如图3,当7t10时,点P在线段CE上,;解得:t(s);7,t(应舍去),综上所述:当P点的坐标为:P(,0)或 P(8,4)时,APE的面积等于【点睛】本题考查了三角形的面积的计算公式,在本题计算的过程中根据动点的坐标正确地求出三角形的底边长度和高是解题的关键4如图,在平面直角坐标系中,已知,将线段平移至,点

10、在轴正半轴上,且连接,(1)写出点的坐标为 ;点的坐标为 ;(2)当的面积是的面积的3倍时,求点的坐标;(3)设,判断、之间的数量关系,并说明理由解析:(1),;(2)点D的坐标为或;(3)之间的数量关系,或,理由见解析【分析】(1)由二次根式成立的条件可得a和b的值,由平移的性质确定BCOA,且BC=OA,可得结论;(2)分点D在线段OA和在OA延长线两种情况进行计算;(3)分点D在线段OA上时,+=和在OA延长线-=两种情况进行计算;【详解】解:(1),a=2,b=3,点C的坐标为(2,3),A(4,0),OA=BC=4,由平移得:BCx轴,B(6,3),故答案为:,;(2)设点D的坐标为

11、ODC的面积是ABD的面积的3倍如图1,当点D在线段OA上时,由,得解得点D的坐标为如图2,当点D在OA得延长线上时,由,得解得点D的坐标为综上,点D的坐标为或(3)如图1,当点D在线段OA上时,过点D作DEAB,与CB交于点E由平移知OCAB,DEOC又如图2,当点D在OA得延长线上时,过点D作DEAB,与CB得延长线交于点E由平移知OCAB,DEOC又综上,之间的数量关系,或【点睛】此题考查四边形和三角形的综合题,点的坐标和三角形面积的计算方法,平移得性质,平行线的性质和判定,解题的关键是分点D在线段OA上,和OA延长线上两种情况5如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向

12、上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系. 解析:(1)点 ,点 ;12;(2)存在,点的坐标为和;(3) OFC=FOB-FCD,见解析.【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据DEC的面积是DEB面积的2倍和三角形面积公式得到,解得x=1或x=7,然后写出点E的坐标;(3)分

13、类讨论:当点F在线段BD上,作FMAB,根据平行线的性质由MFAB得2=FOB,由CDAB得到CDMF,则1=FCD,所以OFC=FOB+FCD;同样得到当点F在线段DB的延长线上,OFC=FCD-FOB;当点F在线段BD的延长线上,得到OFC=FOB-FCD【详解】解:(1)点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2(4+2)=12;(2)存在设点E的坐标为(x,0),DEC的面积是DEB面积的2倍,解得x=1或x=7,点E的坐

14、标为(1,0)和(7,0);(3)当点F在线段BD上,作FMAB,如图1,MFAB,2=FOB,CDAB,CDMF,1=FCD,OFC=1+2=FOB+FCD;当点F在线段DB的延长线上,作FNAB,如图2,FNAB,NFO=FOB,CDAB,CDFN,NFC=FCD,OFC=NFC-NFO=FCD-FOB;同样得到当点F在线段BD的延长线上,得到OFC=FOB-FCD【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系也考查了平行线的性质和分类讨论的思想6如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(

15、3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标解析:(1)(-2,0);(2)4秒;(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论(2)判断出PB=CD,即可得出结论;根据PEA的面积以及AE求出点P到AE的距离,结合点P的路线可得坐标【详解】解:(1)C(-3,2),A(1,0),BC=3,OA=1,BC=AE=3,OE=AE-AO=2,

16、E(-2,0);(2)点C的坐标为(-3,2)BC=3,CD=2,点P的横坐标与纵坐标互为相反数;点P在线段BC上,PB=CD=2,即t=(2+2)1=4;当t=4秒时,点P的横坐标与纵坐标互为相反数;PEA的面积为2,A(1,0),E(-2,0),AE=3,设点P到AE的距离为h,h=,即点P到AE的距离为,点P的坐标为(0,)或(-3,)【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标7已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线A

17、B、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数解析:(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,P

18、EQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,即PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本

19、题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键8如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数解析:(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线

20、的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-J

21、AD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系9已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与

22、AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平

23、行,平行线同旁内角互补等知识是解题的关键10综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?请说明理由若点不在线段上运动时(点与点、三点都不重合),请你画出满足条件的所有图形并直接写出,之间的数量关系解析:(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交

24、于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;(2);理由如下:如图,过作交于, , ; 当点在延长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系11已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连

25、接、,且平分,平分,若,求的度数解析:(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DB

26、C,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键12已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且

27、BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系解析:(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+B

28、ED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质13如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中

29、固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE

30、时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL

31、180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况

32、:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题

33、关键14如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)解析:(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过

34、E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC

35、,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的度数为n+40或n-40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键15如图,

36、在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1x2|y1y2|,则点A与点B的“非常距离”为|x1x2|;若|x1x2|y1y2|,则点A与点B的“非常距离”为|y1y2|(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为 ;(2)已知点C(1,2),点D为y轴上的一个动点若点C与点D的“非常距离”为2,求点D的坐标;直接写出点C与点D的“非常距离”的最小值解析:(1)4;(2)或;1【分析】(1)依照题意,分别求出和,比较大小,得出答案,(2)点在轴上所以横坐标为0,所以点和点的纵坐标差的绝对值应为2,

37、可得点坐标,(3)已知点和点的横坐标差的绝对值恒等于1,纵坐标差的绝对是个动点问题,取值范围和1比较,可得出最小值为1【详解】解:(1),点与点的“非常距离”为4故答案为:4(2)点在轴上所以横坐标为0,点和点的纵坐标差的绝对值应为2,设点的纵坐标为,解得或,点的坐标为或,故点的坐标为或;最小值为1,理由为已知点和点的横坐标差的绝对值恒等于1,设点的纵坐标为,当时,可得点与点的“非常距离”为1,当或时,可得点与点的“非常距离”为,点与点的“非常距离”的最小值为1,故点与点的“非常距离”的最小值为1【点睛】本题考查了直角坐标系坐标结合绝对值的应用,是新定义问题,难点在于第三问的动点位置取值范围讨论,需要学生根据题意正确讨论

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服