资源描述
贵州省贵阳市南明区南明小学小学数学五年级下册期末试卷(培优篇)
一、选择题
1.将四个长10cm,宽8cm,高5cm的长方体盒子,用彩纸包在一起,最省包装纸的方法是( )。
A. B. C. D.
2.观察下图,是怎样从图形A得到图形B的( )。
A.先顺时针旋转90°,再向右平移10格
B.先逆时针旋转90°,再向右平移10格
C.先顺时针旋转90°,再向右平移8格
D.先逆时针旋转90°,再向右平移8格
3.一个数既是12的倍数,又是48的因数,个数不可能是( )。
A.24 B.12 C.48 D.36
4.甲数是乙数的15倍,甲、乙两数的最小公倍数是( )。
A.15 B.甲数 C.乙数 D.甲、乙两数的乘积
5.如图,表示的点应该在( )。
A.0与m之间 B.m与n之间 C.n与1之间 D.1的右边
6.王明体重30kg,书包重5kg。儿童的负重最好不要超过体重的,如果长期背负过重物体,会导致腰痛及背痛,严重的甚至会妨碍骨骼生长,王明的书包( )。
A.超重 B.不超重 C.无法确定
7.天柱山推出甲,乙两种购票优惠方案(如下)。一家2个大人带3个小孩去游玩,选择( )方案更省钱。
甲方案:成人每位100元,小孩每位40元。
乙方案:团体5人及5人以上每位80元。
A.甲 B.乙 C.甲和乙
8.用大豆发豆芽,1kg大豆可长出5kg豆芽。已知种子刚刚开始萌发时只进行呼吸作用会消耗有机物,但种子萌发长出芽开始进行光合作用后,有机物的量就会逐渐增加。那么下列四幅图中,( )能正确反映大豆长成豆芽过程中有机物质量变化。
A. B. C. D.
二、填空题
9.800立方厘米=(________)立方分米 (填分数)
4.08升=(________)升(________)毫升
10.在括号里填上适当的分数。
11.用6,0,9这三个数字组成的三位数中,能同时有因数2,3,5的数是(________)和(________)。
12.12和16的最大公因数是(______),5和15的最小公倍数是(______)。
13.把一个长30厘米、宽24厘米的长方形截成同样大小、面积尽可能大的正方形,没有剩余,可以截成(______)个,每个正方形的面积是(______)平方厘米。
14.从正面看是图(1)的立体图形有________;从左面看是图(2)的立体图形有________;从左面和上面看都是由两个小正方体组成的立体图形是________。
15.有A、B、C三种规格的纸板各一批(数量足够多),如下图所示,现在从中选6张做成一个长方体(正方体除外)。做的长方体中,体积最小是(______)立方厘米。
16.有12个零件,其中有一个是次品(次品比其他零件略轻),用天平至少称(________)次能保证找出这个次品。
三、解答题
17.直接写出得数。
7.20.4= 3.612= 09.9= 2.310=
13.49= 37= 14.5+5.5=
18.计算下面各题,注意使用简便算法。
(1) (2) (3)
19.解方程。
20.甲、乙、丙三人开车,甲12分行驶了10千米乙行驶了8千米用了10分,丙9分行驶了7千,甲、乙、丙三人谁的速度最快?
21.一堆糖果不超过110颗,如果3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,这堆糖果一共有多少颗?
22.农民伯伯给果树浇水,第一天上午浇了所有果树的,下午浇了所有果树的,剩下的第二天下午要浇完。
(1)第一天一共浇了所有果树的几分之几?
(2)第二天下午要浇几分之几?
23.为了引水灌溉,张圩村修建了一个长80米的水槽,水槽的横截面是一个边长8分米的正方形。
(1)如果要在水槽内壁的底面和侧面抹上水泥,抹水泥的面积是多少平方米?
(2)引水灌溉时,如果水槽内的水深6分米,水流速度是25米/分,这个水槽1小时可以引水多少立方米?
24.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
25.(1)画出下图中长方形的所有对称轴。
(2)将三角形绕A点逆时针旋转90度,画出旋转后的图形。
(3)将旋转后的三角形向左平移5格,画出平移后的图形。
26.下图是小红用长方体容器做的实验,从里面量这个容器长,宽,她向这个容器里倒了一些水,正好出现左右两个正方形的面(如图①)。小红又将一个土豆放入水中,恰好出现了前后两个面是正方形(如图②),请你计算出该土豆的体积是多少立方厘米?(单位:)
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据长方体的表面积=(长×宽+长×高+宽×高)×2,分别计算每个选项中长方体的表面积,比较即可。
【详解】
A.长:10×2=20(厘米),宽:8×2=16(厘米),高5厘米
(20×16+20×5+16×5)×2
=(320+100+80)×2
=500×2
=1000(平方厘米);
B.长:10厘米,宽:8厘米,高:4×5=20(厘米)
(10×8+10×20+8×20)×2
=(80+200+160)×2
=440×2
=880(平方厘米)
C.长:10×2=20(厘米),宽:8厘米,高:5×2=10(厘米)
(20×8+20×10+8×10)×2
=(160+200+80)×2
=440×2
=880(平方厘米)
D.长:10厘米,宽:8×2=16(厘米),高5×2=10(厘米)
(10×16+10×10+16×10)×2
=(160+100+160)×2
=420×2
=840(平方厘米)
840<880<1000
故选择:D
【点睛】
此题考查了包装问题,也可从减少的表面积入手解答此题。
2.B
解析:B
【分析】
在平面内,把一个图形围绕某一固定点按顺时针或逆时针方向转动一定的角度的过程,称为旋转。这个点为旋转中心,旋转的角度叫旋转角。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。注意平移时要看准一个点,看这个点移动了几格。
【详解】
观察图形可知图形A先逆时针旋转90°,再向右平移10格得到图形B。
故选B。
【点睛】
平移和旋转都是物体或图形的位置发生变化而形状、大小不变。区别在于,平移时物体沿直线运动,本身方向不发生改变;旋转是物体绕着某一点或轴运动,本身方向发生了变化。
3.D
解析:D
【分析】
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数,据此解答。
【详解】
A.24是12的倍数,又是48的因数;
B.12是12的倍数,又是48的因数;
C.48是12的倍数,又是48的因数;
D.36是12的倍数,不是36的因数。
故答案选:D
【点睛】
本题考查因数与倍数的意义,根据因数与倍数的意义进行解答。
4.B
解析:B
【分析】
两数成倍数关系,最小公倍数是较大数。
【详解】
乙数×15=甲数,甲、乙两数的最小公倍数是甲数。
故答案为:B
【点睛】
特殊情况还有两数互质,最小公倍数是两数的积。
5.C
解析:C
【分析】
由图可知,把1平均分成了3份,则每份表示 ,所以m表示,n表示 ,在和1之间,据此选择。
【详解】
由分析可知,的点应该在n与1之间。
故选择:C
【点睛】
此题考查了分数的意义,以及分数的大小比较,先确定好m和n的值是解题关键。
6.A
解析:A
【分析】
要判断王明的书包是否超重,那就必须知道王明的负重是多少,根据儿童的负重最好不要超过体重的,单位“1”体重是30千克,即可求出王明的负重,用王明的负重和他的书包重比较就可以判断出来。
【详解】
30×=(千克)
5>
所以王明的书包超重。
故选:A
【点睛】
此题考查的是分数乘法的应用,解答此题关键是要想知道王明的书包是否超重,必须知道王明的负重,如果书包重大于负重,那王明的书包就超重,如果书包重不大于负重,那题的书包就不超重。
7.A
解析:A
【分析】
根据题意,分别求出甲方案和乙方案需要的费用,再进行比较,即可解答。
【详解】
甲方案:100×2+3×40
=200+120
=320(元)
乙方案:2+3=5(人)
80×5=400(元)
320<400
选择甲方案更省钱。
故答案选:A
【点睛】
解答本题的关键是明确两种方案不同的优惠方法,分别计算出需要的费用,再进行比较。
8.A
解析:A
【分析】
种子刚刚开始萌发时只进行呼吸作用消耗有机物,不进行光合作用制造有机物,所以有机物的量会减少;当种子萌发抽出绿叶开始进行光合作用时,有机物的量就会逐渐增加。
【详解】
通过分析知道种子萌发过程中有机物的量的变化是:刚刚开始萌发时只进行呼吸作用消耗有机物,不进行光合作用制造有机物,所以有机物的量会减少;当种子萌发抽出绿叶开始进行光合作用时,有机物的量就会逐渐增加。所以种子萌发的过程中有机物量的变化规律是先减少后增加。
故答案为:A。
【点睛】
此题中涉及到的呼吸作用和光合作用的关系是学习的难点,更是考试的重点,要注意扎实掌握。
二、填空题
9.80
【分析】
1立方分米=1000立方厘米,1升=1000毫升;大单位变小单位乘进率,小单位变大单位除以进率,由此解答即可。
【详解】
800立方厘米=立方分米 (填分数)
4.08升=4升80毫升
【点睛】
熟练掌握体积单位、容积单位之间的进率是解答本题的关键。
10.见详解
【分析】
根据分数的意义,将0~1之间平均分为3份,每小格占其中1份,用分数表示为,几份就为三分之几,据此解答。
【详解】
【点睛】
明确分数的意义是解决此题的关键。
11.960
【分析】
能同时有因数2,3,5的数,也就是2,3,5的倍数,个位上是0,且各个数位上的数字之和是3的倍数的数,据此解答。
【详解】
用6,0,9这三个数字组成的三位数中,能同时有因数2,3,5的数是690和960。
【点睛】
此题主要考查了2,3,5的倍数特征,需牢记并能灵活运用。
12.15
【分析】
求两个数最大公因数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解;当两个数是倍数时,最大公因数是较小的数,最小公倍数是较大的数,据此解答。
【详解】
12=2×2×3
16=2×2×2×2
12和16的最大公因数是:2×2=4;
15是5的倍数,5和15的最小公倍数是15。
【点睛】
解答此题的关键是灵活应用求两个数最大公因数、最小公倍数的方法。
13.36
【分析】
把一个长30厘米、宽24厘米的长方形截成同样大小、面积尽可能大的正方形,没有剩余,需要找出30和24的最大公因数,这个数就是尽可能大的正方形的边长,再利用正方形面积公式计算正方形的面积即可。
【详解】
30=2×3×5
24=2×2×2×3
30和24的最大公约数是:2×3=6,所以尽可能大的正方形的边长是6厘米。
30÷6=5
24÷6=4
所以至少可以裁正方形的个数为:5×4=20(个)
面积:6×6=36(平方厘米)
【点睛】
此题考查了图形的拆拼,正方形的边长,最大是长方形长和宽的最大公因数是解决此题的关键。
14.A
解析:A和D A、B、C A
【分析】
分别将A、B、C、D四个图形在正面、左面看到的图形画出来,再进行选择即可。
【详解】
从正面看是图(1)的立体图形有A和D;
从左面看是图(2)的立体图形有A、B、C;
从左面和上面看都是由两个小正方体组成的立体图形是A。
【点睛】
本题主要考查了学生的空间想象能力,一定要能够根据不同方位画出看到的图形。
15.45
【分析】
正方体除外,所以长方体各个面不能一样,要想使体积最小,各个面应该尽可能的小,则体积最小的长方体应是长宽高分别为3厘米,3厘米,5厘米。
【详解】
3×3×5
=9×5
=45(立方厘
解析:45
【分析】
正方体除外,所以长方体各个面不能一样,要想使体积最小,各个面应该尽可能的小,则体积最小的长方体应是长宽高分别为3厘米,3厘米,5厘米。
【详解】
3×3×5
=9×5
=45(立方厘米)
做的长方体,体积最小是45立方厘米。
【点睛】
本题考查长方体的体积,解答本题的关键是找到体积最小的长方体的长宽高。
16.3
【分析】
第一次两端各放6个,一端下沉次品就在其中。没有次品一端的6个零件取下。
第二次把含有次品一端的6个零件,放在天平两端,每端3个,如果一端下沉,说明次品就在其中。没有次品一端的3个零件取
解析:3
【分析】
第一次两端各放6个,一端下沉次品就在其中。没有次品一端的6个零件取下。
第二次把含有次品一端的6个零件,放在天平两端,每端3个,如果一端下沉,说明次品就在其中。没有次品一端的3个零件取下。
第三次把含有次品一端的3个零件,取其中的2个放在天平上,每端各1个,如果天平平衡说明次品就余下的那个。如果天平不平衡,次品就是下沉的那一端的那个零件。
【详解】
由分析可知,至少称3次能保证找出这个次品。
【点睛】
本题考查找次品问题,总结规律,称n次最多可以分辨3n个物品。
三、解答题
17.18;0.3;0;23;
4.4;;20;
【详解】
略
解析:18;0.3;0;23;
4.4;;20;
【详解】
略
18.(1);(2);(3)
【分析】
(1),利用加法交换律和结合律简便运算;
(2)先去括号,再计算;
(3),观察可知,;……据此推出结果等于。
【详
解析:(1);(2);(3)
【分析】
(1),利用加法交换律和结合律简便运算;
(2)先去括号,再计算;
(3),观察可知,;……据此推出结果等于。
【详解】
(1)
(2)
(3)
19.;;;
【分析】
解方程运用等式的性质及分数加减法,据此可得出答案。
【详解】
解:
;
解:
;
解:
;
解:
。
解析:;;;
【分析】
解方程运用等式的性质及分数加减法,据此可得出答案。
【详解】
解:
;
解:
;
解:
;
解:
。
20.甲的速度最快
【分析】
首先根据路程÷时间=速度分别用甲、乙、丙三人行的路程除以各自用的时间,求出三人的速度各是多少,然后根据异分母分数的比较大小的方法,判断出三人谁的速度最快即可。
【详解】
甲:
解析:甲的速度最快
【分析】
首先根据路程÷时间=速度分别用甲、乙、丙三人行的路程除以各自用的时间,求出三人的速度各是多少,然后根据异分母分数的比较大小的方法,判断出三人谁的速度最快即可。
【详解】
甲:(千米/分)
乙:(千米/分)
丙:(千米/分)
答:甲的速度最快。
【点拨】
本题主要考查行程问题的公式以及分数和除法的关系,熟练掌握行程问题的公式并灵活运用。
21.108颗
【分析】
3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,说明糖果数量比5和7的公倍数多3,且是3的倍数,求出5和7的最小公倍数,再用最小公倍数分别×2、×3,确
解析:108颗
【分析】
3颗3颗数,刚好数完;5颗5颗数,最后还剩3颗;7颗7颗数,最后也剩3颗,说明糖果数量比5和7的公倍数多3,且是3的倍数,求出5和7的最小公倍数,再用最小公倍数分别×2、×3,确定110以内是3的倍数的数,加3即可。
【详解】
5×7=35(颗)
35×2=70(颗)
35×3=105(颗)
105是3的倍数。
105+3=108(颗)
答:这堆糖果一共有108颗。
【点睛】
两数互质,最小公倍数是两数的积。
22.(1)
(2)
【分析】
(1)把第一天上午浇的量和下午浇的量相加,即+;
(2)把总量看作单位“1”,即用总量1减去第一天浇的量即可求出第二天下午浇了几分之几。
【详解】
(1)+=
答:第一天一
解析:(1)
(2)
【分析】
(1)把第一天上午浇的量和下午浇的量相加,即+;
(2)把总量看作单位“1”,即用总量1减去第一天浇的量即可求出第二天下午浇了几分之几。
【详解】
(1)+=
答:第一天一共浇了所有果树的。
(2)1-=
答:第二天下午要浇。
【点睛】
本题主要考查分数的加减法,要注意找准单位“1”。
23.(1)192平方米
(2)720立方米
【分析】
(1)通过题目可知,这个水槽的长是80米,宽是8分米,高是8分米,这个水槽的前面和后面不需要水泥的,由于要往水槽里引水,在底面和侧面抹上水泥,则求这
解析:(1)192平方米
(2)720立方米
【分析】
(1)通过题目可知,这个水槽的长是80米,宽是8分米,高是8分米,这个水槽的前面和后面不需要水泥的,由于要往水槽里引水,在底面和侧面抹上水泥,则求这个水槽的3个面的面积,即长×高×2+长×宽,把数代入公式即可求解。
(2)由于6分米=0.6米,1分钟能引水:0.6×0.8×25,则1小时的引水量,把1分钟引水量乘60即可。
【详解】
(1)8分米=0.8米
80×0.8×2+80×0.8
=128+64
=192(平方米)
答:抹水泥的面积是192平方米。
(2)1小时=60分
0.6×0.8×25×60
=0.48×25×60
=12×60
=720(立方米)
答:这个水槽1小时可以引水720立方米
【点睛】
本题主要考查长方体的表面积和体积的公式,要注意这个水槽只有3个面是解题的关键。
24.5厘米
【分析】
由题意可知,放入石块后,水增加的体积就是石块的体积;再根据长方体体积=长×宽×高,解答即可。
【详解】
石块体积:15×15×5=1125(立方厘米)
石块的高:1125÷12÷7
解析:5厘米
【分析】
由题意可知,放入石块后,水增加的体积就是石块的体积;再根据长方体体积=长×宽×高,解答即可。
【详解】
石块体积:15×15×5=1125(立方厘米)
石块的高:1125÷12÷7.5=12.5(厘米)
答:石块的高是12.5厘米。
【点睛】
考查了长方体体积公式的灵活运用,明确水上升的体积就是石块的体积是解题关键。
25.见详解
【分析】
(1)画对称轴的步骤:找出轴对称图形的任意一组对称点;连结对称点;画出对称点所连线段的垂直平分线,就可以得到该图形的对称轴。
(2)作旋转一定角度后的图形步骤:根据题目要求,确定旋
解析:见详解
【分析】
(1)画对称轴的步骤:找出轴对称图形的任意一组对称点;连结对称点;画出对称点所连线段的垂直平分线,就可以得到该图形的对称轴。
(2)作旋转一定角度后的图形步骤:根据题目要求,确定旋转中心、旋转方向和旋转角;分析所作图形,找出构成图形的关键点;找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;作出新图形,顺次连接作出的各点即可。
(3)作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点
【详解】
【点睛】
决定平移后图形的位置的要素:一是平移的方向,二是平移的距离。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
26.160立方厘米
【分析】
已知长方体容器从里面量得长10厘米,宽8厘米,当向这个容器中倒水,正好出现左右两个正方形的面时,可知此时容器内水的高度为8厘米;将一个土豆放入水中,恰好出现了前后两个面是正
解析:160立方厘米
【分析】
已知长方体容器从里面量得长10厘米,宽8厘米,当向这个容器中倒水,正好出现左右两个正方形的面时,可知此时容器内水的高度为8厘米;将一个土豆放入水中,恰好出现了前后两个面是正方形时,可知此时容器内水的高度为10厘米。利用长方体的容积公式求出两次的容积差,就是土豆的体积。
【详解】
10×8×10-10×8×8
=800-640
=160(立方厘米)
答:该土豆的体积是160立方厘米。
【点睛】
此题主要考查长方体的体积(容积)的计算,关键是理解两次容积差即等于土豆的体积。
展开阅读全文