1、(完整版)苏教七年级下册期末解答题压轴数学试卷经典一、解答题1如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)2如图,平分,B=450,C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成
2、“平分”,其它条件不变,的大小是否变化,并请说明理由3如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,
3、AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值4RtABC中,C=90,点D、E分别是ABC边AC、BC上的点,点P是一动点.令PDA=1,PEB=2,DPE=.(1)若点P在线段AB上,如图(1)所示,且=50,则1+2= ;(2)若点P在边AB上运动,如图(2)所示,则、1、2之间的关系为: ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由. (4)若点P运动到ABC形外,如图(4)所示,则、1、2之间的关系为:.5如图,ABC和ADE有公共顶
4、点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由6直线与直线垂直相交于点O,点A在直线上运动,点B在直线上运动(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小(2)如图2,已知不平行分别是和的角平分线,
5、又分别是和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出的度数(3)如图3,延长至G,已知的角平分线与的角平分线及反向延长线相交于,在中,如果有一个角是另一个角的3倍,则的度数为_(直接写答案)7(数学经验)三角形的中线,角平分线,高是三角形的重要线段,我们知道,三角形的3条高所在直线交于同一点(1)如图1,ABC中,A90,则ABC的三条高所在的直线交于点 ;如图2,ABC中,BAC90,已知两条高BE,AD,请你仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)画出ABC的第三条高(不写画法,保留作图痕迹)(综合应用
6、)(2)如图3,在ABC中,ABCC,AD平分BAC,过点B作BEAD于点E若ABC80,C30,则EBD ;请写出EBD与ABC,C之间的数量关系 ,并说明理由(拓展延伸)(3)三角形的中线将三角形分成面积相等的两部分,如果两个三角形的高相同,则他们的面积比等于对应底边的比如图4,M是BC上一点,则有如图5,ABC中,M是BC上一点BM=BC,N是AC的中点,若三角形ABC的面积是m请直接写出四边形CMDN的面积 (用含m的代数式表示)8如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角()(1)当_度时,;当_度时;(2)当的一边与的某一边
7、平行(不共线)时,直接写出旋转角的所有可能的度数;(3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明9模型规律:如图1,延长交于点D,则因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”模型应用(1)直接应用:如图2,则_;如图3,_;(2)拓展应用:如图4,、的2等分线(即角平分线)、交于点,已知,则_;如图5,、分别为、的10等分线它们的交点从上到下依次为、已知,则_;如图6,、的角平分线、交于点D,已知,则_;如图7,、的角平分线、交于点D,则、之同的数量关系为_10认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题(探究1)
8、:如图1,在ABC中,O是ABC与ACB的平分线BO和CO的交点,通过分析发现BOC=90+A,(请补齐空白处)理由如下:BO和CO分别是ABC和ACB的角平分线,1=ABC,_, 在ABC中,A+ABC+ACB=1801+2=(ABC+ACB)=(180A)=90A,BOC=180(1+2)=180(_)=90+A(探究2):如图2,已知O是外角DBC与外角ECB的平分线BO和CO的交点,则BOC与A有怎样的关系?请说明理由(应用):如图3,在RtAOB中,AOB=90,已知AB不平行与CD,AC、BD分别是BAO和ABO的角平分线,又CE、DE分别是ACD和BDC的角平分线,则E=_;(拓
9、展):如图4,直线MN与直线PQ相交于O,MOQ=60,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其延长线交于E、F,在AEF中,如果有一个角是另一个角的4倍,则ABO=_【参考答案】一、解答题1(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b
10、之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;
11、当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口2(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE解析:(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数
12、,利用DAE=90-ADE即可求出DAE的度数(2)求出ADE的度数,利用DFE=90-ADE即可求出DAE的度数(3)利用AE平分BEC,AD平分BAC,求出DFE=15即是最好的证明【详解】(1)B=45,C=73,BAC=62,AD平分BAC,BAD=CAD=31,ADE=B+BAD=45+31=76,AEBC,AEB=90,DAE=90-ADE=14(2)同(1),可得,ADE=76,FEBC,FEB=90,DFE=90-ADE=14(3)的大小不变.=14理由: AD平分 BAC,AE平分BECBAC=2BAD,BEC=2AEB BAC+B+BEC+C =3602BAD+2AEB=3
13、60-B-C=242BAD+AEB=121 ADE=B+BADADE=45+BADDAE=180-AEB-ADE=180-AEB-45-BAD=135-(AEB+BAD)=135-121=14【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.3(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=A
14、CD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的
15、外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2
16、An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=18
17、0【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要4(1)140;(2)1+2=90+;(3)1=90+2+,理由见解析;(4)2=90+1【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出1+2解析:(1)140;(2)1+2=90+;(3)1=90+2+,理由见解析;(4)2=90+1【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出1+2=C+,进而得出即可;(2)利用(1)中所求的结论得出、1、2之间的关系即可;(3)利用三角外角的性质,得出1=C+2+=90+2+;(4)利用三角形内角和定理
18、以及邻补角的性质可得出、1、2之间的关系试题分析:(1)12CDPCEP360,CCDPCEP360,12C,C90,50,12140,故答案为140;(2)由(1)得C12,1290.故答案为1290.(3)1902.理由如下:如图,设DP与BE的交点为M,2DME,DMEC1,1C2902.(4)如图,设PE与AC的交点为F,PFDEFC,180PFD180EFC,1801C1802,2901.故答案为2901点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.5(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的
19、性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,OAG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,O
20、F=GH-HF-OG=4-1-2=1结论:N+M=142.5,度数不变理由:如图2中,MF,MO分别平分AFO,AOF,M=180-(AFO+AOF)=180-(180-FAO)=90+FAO,NH,NG分别平分DHG,BGH,N=180-(DHG+BGH)=180-(HAG+AGH+HAG+AHG)=180-(180+HAG)=90-HAG=90-(30+FAO+45)=52.5-FAO,M+N=142.5【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用FAO表示出M,N6(1)不发生变化,AEB=135;(2)不发生变化,C
21、ED=67.5;(3)60或45【分析】(1)根据直线MN与直线PQ垂直相交于O可知AOB=90,再由AE、BE分别是BA解析:(1)不发生变化,AEB=135;(2)不发生变化,CED=67.5;(3)60或45【分析】(1)根据直线MN与直线PQ垂直相交于O可知AOB=90,再由AE、BE分别是BAO和ABO的角平分线得出BAE=OAB,ABE=ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出AOB=90,进而得出OAB+OBA=90,故PAB+MBA=270,再由AD、BC分别是BAP和ABM的角平分线,可知BAD=BAP,A
22、BC=ABM,由三角形内角和定理可知F=45,再根据DE、CE分别是ADC和BCD的角平分线可知CDE+DCE=112.5,进而得出结论;(3)由BAO与BOQ的角平分线相交于E可知EAO=BAO,EOQ=BOQ,进而得出E的度数,由AE、AF分别是BAO和OAG的角平分线可知EAF=90,在AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论【详解】解:(1)AEB的大小不变,直线MN与直线PQ垂直相交于O,AOB=90,OAB+OBA=90,AE、BE分别是BAO和ABO角的平分线,BAE=OAB,ABE=ABO,BAE+ABE=(OAB+ABO)=45,AEB=135;(2)CED的
23、大小不变延长AD、BC交于点F直线MN与直线PQ垂直相交于O,AOB=90,OAB+OBA=90,PAB+MBA=270,AD、BC分别是BAP和ABM的角平分线,BAD=BAP,ABC=ABM,BAD+ABC=(PAB+ABM)=135,F=45,FDC+FCD=135,CDA+DCB=225,DE、CE分别是ADC和BCD的角平分线,CDE+DCE=112.5,CED =67.5;(3)BAO与BOQ的角平分线相交于E,EAO=BAO,EOQ=BOQ,E=EOQ-EAO=(BOQ-BAO)=ABO,AE、AF分别是BAO和OAG的角平分线,EAF=90在AEF中,有一个角是另一个角的3倍,
24、故有:EAF=3E,E=30,ABO=60;EAF=3F,E=60,ABO=120(舍弃);F=3E,E=22.5,ABO=45;E=3F,E=67.5,ABO=135(舍弃)ABO为60或45故答案为:60或45【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180是解答此题的关键7(1)A;见解析;(2)25;2EBDABCACB;(3)m【分析】(1)由直角三角形三条高的定义即可得出结论;分别延长BE,DA,两者交于F,连接CF交BA的延长线解析:(1)A;见解析;(2)25;2EBDABCACB;(3)m【分析】(1)由直角三角形三条高的定义即可得出结论;分
25、别延长BE,DA,两者交于F,连接CF交BA的延长线于H,CH即为所求;(2)由三角形内角和定理和角平分线的性质可以得出BAEBAC35,再由直角三角形的性质得ABE55,即可求解;由三角形内角和定理和角平分线的性质求解即可;(3)连接CD,由中线的性质得SADNSCDN,同理:SABNSCBN,设SADNSCDNa,SABNSCBNm,再求出SCDMSBCD,SACMSABCm,利用面积关系求解即可.【详解】解:(1)直角三角形三条高的交点为直角顶点,A90,ABC的三条高所在直线交于点A,故答案为:A;如图,分别延长BE,DA,两者交于F,连接CF交BA的延长线于H,CH即为所求;(2)A
26、BC80,ACB30,BAC70,AD平分BAC,BAEBAC35,BEAD,AEB90,ABE903555,EBDABCABE805525,故答案为:25;EBD与ABC,C之间的数量关系为:2EBDABCACBBEAD,AEB90,ABE90BAD,EBDABCABEABC+BAD90,AD平分BAC,BADCADBAC,BAC180ABCACB,BAD90ABCACB,EBDABC+BAD90ABC+90ABCC90=ABCC,2EBDABCACB,故答案为:2EBDABCACB;(3)连接CD,如图所示:N是AC的中点,SADNSCDN,同理:SABNSCBN,设SADNSCDNa,A
27、BC的面积是m,SABNSCBNm,SBCDSABDma,BMBC,SCDM3SBDM,SACM3SABM,SCDMSBCD(ma),SACMSABCm,SACMS四边形CMDN+SADNSCDM+SCDN+SADN,即:,解得:a,S四边形CMDNSCDM+SCDN,【点睛】本题主要考查了三角形的高,三角形的中线,三角形内角和,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.8(1)105,15;(2)旋转角的所有可能的度数是:15,45,105,135,150;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,则可求得旋转角解析:(1)105,15;(
28、2)旋转角的所有可能的度数是:15,45,105,135,150;(3),保持不变;见解析【分析】(1)三角板ADE顺时针旋转后的三角板为,当时,则可求得旋转角度;当BC时,则可求得旋转角度;(2)分五种情况考虑:ADBC,DEAB,DEBC,DEAC,AEBC,即可分别求出旋转角;(3)设BD分别交、于点M、N,利用三角形的内外角的相等关系分别得出:及,由的内角和为180,即可得出结论【详解】(1)三角板ADE顺时针旋转后的三角板为,当时,如图,EAD=45即旋转角当时,如图,则 =45-30=15即旋转角故答案为:105,15(2)当的一边与的某一边平行(不共线)时,有五种情况当ADBC时
29、,由(1)知旋转角为15;如图(1),当DEAB时,旋转角为45;当DEBC时,由ADDE,则有ADBC,此时由(1)知,旋转角为105;如图(2),当DEAC时,则旋转角为135;如图(3),当AEBC时,则旋转角为150;所以旋转角的所有可能的度数是:15,45,105,135,150(3)当,保持不变;理由如下:设BD分别交、于点M、N,如图在中,【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度9(1)110;260;(2)85;110;142;B-C+2D=0【分析】(1)根据题干中的等式
30、直接计算即可;同理可得A+B+C+D+E+F=BOC+DO解析:(1)110;260;(2)85;110;142;B-C+2D=0【分析】(1)根据题干中的等式直接计算即可;同理可得A+B+C+D+E+F=BOC+DOE,代入计算即可;(2)同理可得BO1C=BOC-OBO1-OCO1,代入计算可得;同理可得BO7C=BOC-(BOC-A),代入计算即可;利用ADB=180-(ABD+BAD)=180-(BOC-C)计算可得;根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论【详解】解:(1)BOC=A+B+C=60+20+30=110;A+B+C+D+E+F=BOC+DOE=213
31、0=260;(2)BO1C=BOC-OBO1-OCO1=BOC-(ABO+ACO)=BOC-(BOC-A)=BOC-(120-50)=120-35=85;BO7C=BOC-(BOC-A)=120-(120-50)=120-10=110;ADB=180-(ABD+BAD)=180-(BOC-C)=180-(120-44)=142;BOD=BOC=B+D+BAC,BOC=B+C+BAC,联立得:B-C+2D=0【点睛】本题主要考查了新定义箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质10【探究1】2=ACB,90A;【探究2】
32、BOC90A,理由见解析;【应用】22.5;【拓展】45或36【分析】【探究1】根据角平分线的定义可得1=ABC,2=解析:【探究1】2=ACB,90A;【探究2】BOC90A,理由见解析;【应用】22.5;【拓展】45或36【分析】【探究1】根据角平分线的定义可得1=ABC,2=ACB,根据三角形的内角和定理可得1+2=90A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得OBC(A+ACB),OCB(A+ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得G的度数,于是可得GC
33、D+GDC的度数,然后根据角平分线的定义和角的和差可得1+2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得EAF=90,然后分三种情况讨论:若EAF=4E,则E=22.5,根据角平分线的定义和三角形的外角性质可得ABO=2E,于是可得结果;若EAF=4F,则F=22.5,由【探究2】的结论可求出ABO=135,然后由三角形的外角性质即可判断此种情况不存在;若F=4E,则E=18,然后再由第一种情况的结论ABO=2E即可求出结果,进而可得答案【详解】解:【探究1】理由如下:BO和CO分别是ABC和ACB的角平分线,1=ABC,2=ACB, 在ABC中,A
34、+ABC+ACB=1801+2=(ABC+ACB)=(180A)=90A,BOC=180(1+2)=180(90A)=90+A;故答案为:2=ACB,90A;【探究2】BOC90A;理由如下:如图2,由三角形的外角性质和角平分线的定义,OBC(A+ACB),OCB(A+ABC),在BOC中,BOC180OBCOCB180(A+ACB)(A+ABC),180(A+ACB+A+ABC),180(180+A),90A;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得:G=,GCD+GDC=45,CE、DE分别是ACD和BDC的角平分线,1=ACD=,2=BDC=,1+2=+=,;故
35、答案为:22.5;【拓展】如图4,AE、AF是BAO和OAG的角平分线,EAQ+FAQ=,即EAF=90,在RtAEF中,若EAF=4E,则E=22.5,EOQ=E+EAQ,BOQ=2EOQ,BAO=2EAQ,BOQ=2E+BAO,又BOQ=BAO+ABO,ABO=2E=45;若EAF=4F,则F=22.5,则由【探究2】知:, ABO=135,ABOBOQ=60,此种情况不存在;若F=4E,则E=18,由第一种情况可知:ABO=2E,ABO=36;综上,ABO=45或36;故答案为:45或36【点睛】本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键