1、2015年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号A、B、C、D四个答案选项,其中只有一个是正确的1(3分)计算3+(3)的结果是()A6B6C1D02(3分)下列运算正确的是()A3x2xxB2x3x6xC(2x)24xD6x2x3x3(3分)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()ABCD4(3分)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()A25台B50台C75台D100台5(3分)如图,一艘海轮位于灯塔P的北偏东55方向,距离灯塔2
2、海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A2海里B2sin55海里C2cos55海里D2tan55海里6(3分)若mn,下列不等式不一定成立的是()Am+2n+2B2m2nCDm2n27(3分)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()AabBabCabD不能判断8(3分)如图,PA和PB是O的切线,点A和点B是切点,AC是O的直径,已知P40,则ACB的大小是()A40B60C70D809(3分)如图,菱形ABCD的周长
3、为8cm,高AE长为cm,则对角线AC长和BD长之比为()A1:2B1:3C1:D1:10(3分)关于x的一元二次方程x2+2mx+2n0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m0同样也有两个整数根且乘积为正给出三个结论:这两个方程的根都是负根;(m1)2+(n1)22;12m2n1其中正确结论的个数是()A0个B1个C2个D3个二、填空题(本大题共6个小题,每小题3分,共18分)11(3分)计算2sin45的结果是 12(3分)不等式1的解集是 13(3分)如图,点D在ABC边BC的延长线上,CE平分ACD,A80,B40,则ACE的大小是 度14(3分)从分别标有数3
4、,2,1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是 15(3分)已知关于x,y的二元一次方程组的解互为相反数,则k的值是 16(3分)如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:DQ1;SPDQ;cosADQ,其中正确结论是 (填写序号)三、解答题(本大题共9个小题,共72分)17(6分)计算:(a+2)18(6分)某学校要了解学生上学交通情况,选取九年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60,“自行车”对应的扇形圆心角为120,已知九年
5、级乘公交车上学的人数为50人(1)九年级学业生中,骑自行车和乘公交车上学哪个更多?多多少人?(2)如果全校有学生2000人,学校准备的400个自行车停车位是否足够?19(8分)如图,ABC中,ABAC,ADBC,CEAB,AECE求证:(1)AEFCEB;(2)AF2CD20(8分)已知关于x的一元二次方程(x1)(x4)p2,p为实数(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解(直接写出三个,不需说明理由)21(8分)反比例函数y(k0)与一次函数ymx+b(m0)交于点A(1,2k1)(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且AOB的面积为3,求
6、一次函数的解析式22(8分)如图,矩形纸片ABCD,将AMP和BPQ分别沿PM和PQ折叠(APAM),点A和点B都与点E重合;再将CQD沿DQ折叠,点C落在线段EQ上点F处(1)判断AMP,BPQ,CQD和FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM1,sinDMF,求AB的长23(8分)某工厂在生产过程中每消耗1万度电可以产生产值5.5万元,电力公司规定,该工厂每月用电量不得超过16万度,月用电量不超过4万度时,单价是1万元/万度;超过4万度时,超过部分电量单价将按用电量进行调整,电价y与月用电量x的函数关系可用如图来表示(效益产值用电量电价)(1)设工厂的月效益为z(万元),
7、写出z与月用电量x(万度)之间的函数关系式,并写出自变量的取值范围;(2)求工厂最大月效益24(10分)如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,ADP沿点A旋转至ABP,连结PP,并延长AP与BC相交于点Q(1)求证:APP是等腰直角三角形;(2)求BPQ的大小;(3)求CQ的长25(10分)已知抛物线yx2+bx+c与x轴交于点A(m2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x1(1)求抛物线解析式(2)直线ykx+2(k0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1x2),当|x1x2|最小时,
8、求抛物线与直线的交点M与N的坐标(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值2015年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号A、B、C、D四个答案选项,其中只有一个是正确的1【分析】根据有理数的加法运算法则计算即可得解【解答】解:3与3互为相反数,且互为相反数的两数和为03+(3)0故选:D【点评】本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键2【分析】根据同类项、整式的乘法、幂的乘方和整式的除法计算即可【解答】解:A、3x2x
9、x,正确;B、2x3x6x2,错误;C、(2x)24x2,错误;D、6x2x3,错误;故选:A【点评】此题考查同类项、整式的乘法、幂的乘方和整式的除法,关键是根据法则计算3【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【解答】解:根据主视图的定义,可得它的主视图为:,故选:A【点评】本题考查三视图的有关知识,本题只要清楚了解各个几何体的三视图即可求解4【分析】设今年购置计算机的数量是x台,根据今年购置计算机数量是去年购置计算机数量的3倍列出方程解得即可【解答】解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100x)台,根据题意可得:x3(100x),解得
10、:x75故选:C【点评】此题考查一元一次方程的应用,关键是根据今年购置计算机数量是去年购置计算机数量的3倍列出方程5【分析】首先由方向角的定义及已知条件得出NPA55,AP2海里,ABP90,再由ABNP,根据平行线的性质得出ANPA55然后解RtABP,得出ABAPcosA2cos55海里【解答】解:如图,由题意可知NPA55,AP2海里,ABP90ABNP,ANPA55在RtABP中,ABP90,A55,AP2海里,ABAPcosA2cos55海里故选:C【点评】本题考查了解直角三角形的应用方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键6【分析】根据不等式的性质
11、1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0mn时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D【点评】本题考查了不等式的性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除
12、以)同一个负数,不等号的方向改变7【分析】分别利用概率公式将a和b求得后比较即可得到正确的选项【解答】解:正六边形被分成相等的6部分,阴影部分占3部分,a,投掷一枚硬币,正面向上的概率b,ab,故选:B【点评】本题考查了几何概率的知识,解题的关键是分别利用概率公式求得a、b的值,难度不大8【分析】由PA、PB是O的切线,可得OAPOBP90,根据四边形内角和,求出AOB,再根据圆周角定理即可求ACB的度数【解答】解:连接OB,AC是直径,ABC90,PA、PB是O的切线,A、B为切点,OAPOBP90,AOB180P140,由圆周角定理知,ACBAOB70,故选:C【点评】本题考查了切线的性质
13、,圆周角定理,解决本题的关键是连接OB,构造等腰三角形解决问题9【分析】首先设设AC,BD相较于点O,由菱形ABCD的周长为8cm,可求得ABBC2cm,又由高AE长为cm,利用勾股定理即可求得BE的长,继而可得AE是BC的垂直平分线,则可求得AC的长,继而求得BD的长,则可求得答案【解答】解:如图,设AC,BD相较于点O,菱形ABCD的周长为8cm,ABBC2cm,高AE长为cm,BE1(cm),CEBE1cm,ACAB2cm,OA1cm,ACBD,OB(cm),BD2OB2cm,AC:BD1:故选:D【点评】此题考查了菱形的性质以及勾股定理注意菱形的四条边都相等,对角线互相平分且垂直10【
14、分析】设方程x2+2mx+2n0的两根为x1、x2,方程y2+2ny+2m0的两根为y1、y2根据方程解的情况可得出x1x22n0、y1y22m0,结合根与系数的关系可得出x1+x22m、y1+y22n,进而得出这两个方程的根都是负根,正确;由方程有两个实数根结合根的判别式即可得出m22n0、n22m0,将(m1)2+(n1)2展开代入即可得出正确;根据根与系数的关系可得出2m2n(y1+1)(y2+1)1、2n2m(x1+1)(x2+1)1,结合x1、x2、y1、y2均为负整数即可得出12m2n1,成立综上即可得出结论【解答】解:设方程x2+2mx+2n0的两根为x1、x2,方程y2+2ny
15、+2m0的两根为y1、y2关于x的一元二次方程x2+2mx+2n0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m0同样也有两个整数根且乘积为正,x1x22n0,y1y22m0,x1+x22m,y1+y22n,这两个方程的根都是负根,正确;关于x的一元二次方程x2+2mx+2n0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m0同样也有两个整数根且乘积为正,4m28n0,4n28m0,m22n0,n22m0,(m1)2+(n1)2m22n+1+n22m+12,正确;y1y22m,y1+y22n,2m2ny1y2+y1+y2(y1+1)(y2+1)1,y1、y2均为负
16、整数,(y1+1)(y2+1)0,2m2n1x1x22n,x1+x22m,2n2mx1x2+x1+x2(x1+1)(x2+1)1,x1、x2均为负整数,(x1+1)(x2+1)0,2n2m1,即2m2n112m2n1,成立综上所述:成立的结论有故选:D【点评】本题考查了根与系数的关系以及根的判别式,逐一分析3条结论的正误是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11【分析】利用二次根式的性质以及特殊角的三角函数值求出即可【解答】解:2sin4522故答案为:【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键12【分析】利用不等式的基本性质来解不等式【解答】解
17、:去分母得:x12,移项得:x3,所以不等式的解集是:x3故答案为:x3【点评】本题考查了解简单不等式的能力解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变13【分析】由A80,B40,根据三角形任意一个外角等于与之不相邻的两内角的和得到ACDB+A,然后利用角平分线的定义计算即可【解答】解:ACDB+A,而A80,B40,ACD80+40120CE平分ACD,ACE60,故答案为60【点评】本题考查了三角形的外角定理,关键是根据
18、三角形任意一个外角等于与之不相邻的两内角的和14【分析】根据写有数字3、2、1、0、1、2、3、的七张一样的卡片中,数字的绝对值小于2的有1、0、1,直接利用概率公式求解即可求得答案【解答】解:写有数字3、2、1、0、1、2、3、的七张一样的卡片中,数字的绝对值小于2的有1、0、1、,任意抽取一张卡片,所抽卡片上数字的绝对值小于2的概率是:故答案为:【点评】本题主要考查了绝对值的性质以及概率公式等知识,正确得出绝对值小于2的数个数和正确运用概率公式是解题的关键15【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k的值【解答】解:解方程组得:,因为关于x,y
19、的二元一次方程组的解互为相反数,可得:2k+32k0,解得:k1故答案为:1【点评】此题考查方程组的解,关键是用k表示出x,y的值16【分析】连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQOB,可证到AODQOD,从而证到AODQOD,则有DQDA1;连接AQ,如图2,根据勾股定理可求出BP易证RtAQBRtBCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;过点Q作QHDC于H,如图3易证PHQPCB,运用相似三角形的性质可求出QH,从而可求出SDPQ的值;过点Q作QNAD于N,如图4易得DPNQAB,根据平行线分线段成比例可得,把AN1D
20、N代入,即可求出DN,然后在RtDNQ中运用三角函数的定义,就可求出cosADQ的值【解答】解:正确结论是提示:连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQOB,可证到AODQOD,从而证到AODQOD,则有DQDA1故正确;连接AQ,如图2则有CP,BP易证RtAQBRtBCP,运用相似三角形的性质可求得BQ,则PQ,故正确;过点Q作QHDC于H,如图3易证PHQPCB,运用相似三角形的性质可求得QH,SDPQDPQH故错误;过点Q作QNAD于N,如图4易得DPNQAB,根据平行线分线段成比例可得,则有,解得:DN由DQ1,得cosADQ故正确综上所述:正确
21、结论是故答案为:【点评】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用三、解答题(本大题共9个小题,共72分)17【分析】首先将括号里面通分运算,进而利用分式的性质化简求出即可【解答】解:(a+2)2a6【点评】此题主要考查了分式的混合运算,正确进行通分运算是解题关键18【分析】(1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行
22、车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案【解答】解:(1)乘公交车所占的百分比,调查的样本容量50300人,骑自行车的人数300100人,骑自行车的人数多,多1005050人;(2)全校骑自行车的人数2000667人,667400,故学校准备的400个自行车停车位不足够【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小19【分析】(1)由ADBC,CEAB,易得AFEB,利用全等三角形的判定得AEFCEB;(2)由全等三角形的性质得AFBC
23、,由等腰三角形的性质“三线合一”得BC2CD,等量代换得出结论【解答】证明:(1)ADBC,CEAB,BCE+CFD90,BCE+B90,CFDB,CFDAFE,AFEB在AEF与CEB中,AEFCEB(AAS);(2)ABAC,ADBC,BC2CD,AEFCEB,AFBC,AF2CD【点评】本题主要考查了全等三角形性质与判定,等腰三角形的性质,运用等腰三角形的性质是解答此题的关键20【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明0即可;(2)要使方程有整数解,那么为整数即可,于是p可取0,4,10时,方程有整数解【解答】解:(1)原方程可化为x25x+4p20,(5)24(4p
24、2)4p2+90,不论p为任何实数,方程总有两个不相等的实数根;,(2)原方程可化为x25x+4p20,方程有整数解,为整数即可,p可取0,2,2时,方程有整数解【点评】本题考查了一元二次方程的根的情况,判别式的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键21【分析】(1)把A(1,2k1)代入y即可求得结果;(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数ymx+b即可得到结果【解答】解:(1)把A(1,2k1)代入y得,2k1k,k1,反比例函数的解析式为:y;(2)由(1)得k1,A(1,1),设B(a,0),SAOB|a|13,a6,B(6,0)或(6,0)
25、,把A(1,1),B(6,0)代入ymx+b得:,一次函数的解析式为:yx+,把A(1,1),B(6,0)代入ymx+b得:,一次函数的解析式为:y所以符合条件的一次函数解析式为:y或yx+【点评】本题考查了用待定系数法确定函数的解析式,三角形的面积,解题时注意数形结合思想的体现22【分析】(1)由矩形的性质得ABC90,由折叠的性质和等角的余角相等,可得BPQAMPDQC,所以AMPBPQCQD;(2)先证明MDMQ,然后根据sinDMF,设DF3x,MD5x,表示出AP、BP、BQ,再根据AMPBPQ,列出比例式解方程求解即可【解答】解:(1)AMPBPQCQD,四边形ABCD是矩形,AB
26、C90,根据折叠的性质可知:APMEPM,EPQBPQ,APM+BPQEPM+EPQ90,APM+AMP90,BPQAMP,AMPBPQ,同理:BPQCQD,根据相似的传递性,AMPCQD;(2)ADBC,DQCMDQ,根据折叠的性质可知:DQCDQM,MDQDQM,MDMQ,AMME,BQEQ,BQMQMEMDAM,sinDMF,设DF3x,MD5x,BPPAPE,BQ5x1,AMPBPQ,解得:x(舍)或x2,AB6【点评】本题主要考查了相似三角形的判定与性质、矩形的性质、翻折的性质以及锐角三角函数的综合运用,在求AB长的问题中,关键是恰当的设出未知数表示出一对相似三角形的对应边列比例式2
27、3【分析】(1)根据题意知电价y与月用电量x的函数关系是分段函数,当0x4时,y1,当4x16时,函数过点(4,1)和(8,1.5)的一次函数,求出解析式;再根据效益产值用电量电价,求出z与月用电量x(万度)之间的函数关系式;(2)根据(1)中得到函数关系式,利用一次函数和二次函数的性质,求出最值【解答】解:(1)根据题意得:电价y与月用电量x的函数关系是分段函数,当0x4时,y1,当4x16时,函数过点(4,1)和(8,1.5)的一次函数,设一次函数为ykx+b,解得:,y,电价y与月用电量x的函数关系为:yz与月用电量x(万度)之间的函数关系式为:z即z(2)当0x4时,z,z随x的增大而
28、增大,当x4时,z有最大值,最大值为:18(万元);当4x16时,z,当x22时,z随x增大而增大,1622,则当x16时,z最大值为54,故当0x16时,z最大值为54,即工厂最大月效益为54万元【点评】本题考查了一次函数的应用,解决本题的关键是图中的函数为分段函数,分别求出个函数的解析式,注意自变量的取值范围对于最值问题,借助于一次函数的性质和二次函数的性质进行解答24【分析】(1)根据旋转的性质可知,APDAPB,所以APAP,PADPAB,因为PAD+PAB90,所以PAB+PAB90,即PAP90,故APP是等腰直角三角形;(2)根据勾股定理逆定理可判断PPB是直角三角形,再根据平角
29、定义求出结果;(3)作BEAQ,垂足为E,由BPQ45,PB2,求出PEBE2,在RtABE中,运用勾股定理求出AB,再由cosEABcosEBQ,求出BQ,则CQBCBQ【解答】解:(1)ADP沿点A旋转至ABP,根据旋转的性质可知,APDAPB,APAP,PADPAB,PAD+PAB90,PAB+PAB90,即PAP90,APP是等腰直角三角形;(2)由(1)知PAP90,APAP1,PP,PBPD,PB2,PB2PP2+PB2,PPB90,APP是等腰直角三角形,APP45,BPQ180904545;(3)作BEAQ,垂足为E,BPQ45,PB2,PEBE2,AE2+13,AB,BE2,
30、EBQEAB,cosEAB,cosEBQ,BQ,CQ【点评】本题主要考查了旋转的性质、全等三角形的判定与性质、勾股定理及逆定理、锐角三角函数的综合运用,有一定难度,作BEAQ,构造等角的余弦值相等列方程或运用相似三角形对应线段成比例求出BQ是解决问题的关键25【分析】(1)根据对称轴公式求出b的值,再根据根与系数的关系求出c的值,从而求出二次函数解析式;(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k2)x10,根据根与系数的关系求出k的值,进而求出M(1,0),N(1,4);(3)O,B,P,C构成多边形的周长LOB+BP+PC+CO,根据线段OB平移过程中,OB、PC长度不
31、变,得到要使L最小,只需BP+CO最短,作点P关于x轴(或OB)对称点P(1,4),连接CP与x轴交于点B,然后根据平移知识和勾股定理解答【解答】解:(1)由已知对称轴为x1,得1,b2,抛物线yx2+bx+c与x轴交于点A(m2,0)和B(2m+1,0),即x2+2x+c0的解为m2和2m+1,(m2)+(2m+1)2,3m3,m1,将m1代入(m2)(2m+1)c得,(12)(2+1)c,c3,m1,c3,抛物线的解析式为yx2+2x+3;(2)由,x2+(k2)x10,x1+x2(k2),x1x21,(x1x2)2(x1+x2)24x1x2(k2)2+4,当k2时,(x1x2)2的最小值
32、为4,即|x1x2|的最小值为2,x210,由x1x2可得x11,x21,即y14,y20,当|x1x2|最小时,抛物线与直线的交点为M(1,0),N(1,4);(3)O(0,0),B(3,0),P(1,4),C(0,3),O,B,P,C构成多边形的周长LOB+BP+PC+CO,线段OB平移过程中,OB、PC长度不变,要使L最小,只需BP+CO最短,如图,平移线段OC到BC,四边形OBCC是矩形,C(3,3),作点P关于x轴(或OB)对称点P(1,4),连接CP与x轴交于点B,设CP解析式为yax+n,解得,yx,当y0时,x,B(,0),又3,故点B向左平移,平移到B,同时,点O向左平移,平移到0(,0)即线段OB向左平移时,周长L最短,此时,线段BP,CO之和最短为PC,OBOB3,CP,当线段OB向左平移,即点O平移到O(,0),点B平移到B(,0)时,周长L最短为+3【点评】本题考查了二次函数综合题,涉及待定系数法求二次函数解析式、函数与方程的关系、最短路径问题等,综合性强,值得关注声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/2/21 11:42:50;用户:18366185883;邮箱:18366185883;学号:22597006第23页(共23页)