1、2011年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1(5分)(2011陕西)设,是向量,命题“若,则|=|”的逆命题是()A若,则|=|”B若=,则|C若,则|D|=|,则2(5分)(2011陕西)设抛物线的顶点在原点,准线方程为x=2,则抛物线的方程是()Ay2=8xBy2=8xCy2=4xDy2=4x3(5分)(2011陕西)设函数f(x)(xR)满足f(x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()ABCD4(5分)(2011陕西)(x2x4)6(xR)展开
2、式中的常数项是()A20B15C15D205(5分)(2011陕西)某几何体的三视图如图所示,则它的体积是()ABC82D6(5分)(2011陕西)函数f(x)=cosx在0,+)内 ()A没有零点 B有且仅有一个零点C有且仅有两个零点D有无穷多个零点7(5分)(2011陕西)设集合M=y|y=|cos2xsin2x|,xR,N=x|x|,i为虚数单位,xR,则MN为()8(5分)(2011陕西)如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分当x1=6,x2=9,p=8.5时,x3等于()A11B10C8D79(5分)(2011陕西)设(x1,y1),(x
3、2,y2),(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()Ax和y的相关系数为直线l的斜率Bx和y的相关系数在0到1之间C当n为偶数时,分布在l两侧的样本点的个数一定相同D直线l过点(,)10(5分)(2011陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()ABCD二、填空题:(本大题共5小题,每小题5分,共25分)11(5分)(2011陕西)设f(x)=,若f(f(1)=1,则a=12(5分)(2011陕
4、西)设nN+,一元二次方程x24x+n=0有整数根的充要条件是n=13(5分)(2011陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为 14(5分)(2011陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)15(5分)(2011陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A(不等式选做题)若不等式a|x+1|+|x2|存在实数解,则实数a的取值范围是
5、 B(几何证明选做题)如图,B=D,AEBC,ACD=90,且AB=6,AC=4,AD=12,则AE= C(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1: (为参数)和曲线C2:p=1上,则|AB|的最小值为 三、解答题:接答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16(12分)(2011陕西)如图,在ABC中,ABC=60,BAC=90,AD是高,沿AD把ABD折起,使BDC=90()证明:平面ADB平面BDC;()设E为BC的中点,求与夹角的余弦值17(12分)(2011陕西)如图,设P是圆x2+y2
6、=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|()当P在圆上运动时,求点M的轨迹C的方程()求过点(3,0)且斜率的直线被C所截线段的长度18(12分)(2011陕西)叙述并证明余弦定理19(12分)(2011陕西)如图,从点P1(0,0)做x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2,再从P2做x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;Pn,Qn,记Pk点的坐标为(xk,0)(k=1,2,n)()试求xk与xk1的关系(2kn);()求|P1Q1|+|P2Q2|+|P3Q3|+|PnQn|
7、20(13分)(2011陕西)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站()为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?()用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对()的选择方案,求X的分布列和数学期望21(14分)(2011陕西)设函数f(x)定义在(0,+)上,f(1)=0,导函数f(
8、x)=,g(x)=f(x)+f(x)()求g(x)的单调区间和最小值;()讨论g(x)与的大小关系;()是否存在x00,使得|g(x)g(x0)|对任意x0成立?若存在,求出x0的取值范围;若不存在请说明理由2011年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1(5分)(2011陕西)设,是向量,命题“若,则|=|”的逆命题是()A若,则|=|”B若=,则|C若,则|D|=|,则【考点】四种命题间的逆否关系菁优网版权所有【专题】简易逻辑【分析】根据所给的原命题,看清题设和结论,把原命题的题
9、设和结论互换位置,得到要求的命题的逆命题【解答】解:原命题是:“若,则|=|”,它的逆命题是把题设和结论互换位置,即逆命题是:若|=|,则,故选D【点评】本题考查四种命题,考查把其中一个看成是原命题,来求出它的逆命题,否命题,逆否命题,本题是一个基础题2(5分)(2011陕西)设抛物线的顶点在原点,准线方程为x=2,则抛物线的方程是()Ay2=8xBy2=8xCy2=4xDy2=4x【考点】抛物线的标准方程菁优网版权所有【专题】计算题【分析】根据准线方程求得p,则抛物线的标准方程可得【解答】解:准线方程为x=2=2p=4抛物线的方程为y2=8x故选B【点评】本题主要考查了抛物线的标准方程考查了
10、考生对抛物线基础知识的掌握3(5分)(2011陕西)设函数f(x)(xR)满足f(x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()ABCD【考点】函数奇偶性的判断;函数的周期性菁优网版权所有【专题】数形结合【分析】由定义知,函数为偶函数,先判断A、C两项,图象对应的函数为奇函数,不符合题意;再取特殊值x=0,可得f(2)=f(0),可知B选项符合要求【解答】解:f(x)=f(x)函数图象关于y轴对称,排除A、C两个选项又f(x+2)=f(x)函数的周期为2,取x=0可得f(2)=f(0)排除D选项,说明B选项正确故答案为B【点评】利用函数图象的对称性是判断一个函数为奇函数
11、或偶函数的一个重要指标,周期性与奇偶性相结合是函数题的一种常规类型4(5分)(2011陕西)(x2x4)6(xR)展开式中的常数项是()A20B15C15D20【考点】二项式系数的性质菁优网版权所有【专题】计算题【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0求出展开式的常数项【解答】解:展开式的通项为Tr+1=(1)rC6rx123r令123r=0,得r=4所以展开式的常数项为C64=15故选C【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题5(5分)(2011陕西)某几何体的三视图如图所示,则它的体积是()ABC82D【考点】由三视图求面积、体积菁优网版权
12、所有【专题】计算题【分析】三视图复原的几何体是正方体,除去一个倒放的圆锥,根据三视图的数据,求出几何体的体积【解答】解:三视图复原的几何体是棱长为:2的正方体,除去一个倒放的圆锥,圆锥的高为:2,底面半径为:1;所以几何体的体积是:8=故选A【点评】本题是基础题,考查三视图复原几何体的判定,几何体的体积的求法,考查空间想象能力,计算能力,常考题型6(5分)(2011陕西)函数f(x)=cosx在0,+)内 ()A没有零点B有且仅有一个零点C有且仅有两个零点D有无穷多个零点【考点】函数零点的判定定理菁优网版权所有【专题】计算题;压轴题;分类讨论【分析】根据余弦函数的最大值为1,可知函数在,+)上
13、为正值,在此区间上函数没有零点,问题转化为讨论函数在区间0,)上的零点的求解,利用导数讨论单调性即可【解答】解:f(x)=+sinx当x0)时,0且sinx0,故f(x)0函数在0,)上为单调增取x=0,而0可得函数在区间(0,)有唯一零点当x时,1且cosx1故函数在区间,+)上恒为正值,没有零点综上所述,函数在区间0,+)上有唯一零点【点评】在0,+)内看函数的单调性不太容易,因此将所给区间分为两段来解决是本题的关键所在7(5分)(2011陕西)设集合M=y|y=|cos2xsin2x|,xR,N=x|x|,i为虚数单位,xR,则MN为()A(0,1)B(0,1C0,1)D0,1【考点】交
14、集及其运算;绝对值不等式的解法菁优网版权所有【专题】计算题【分析】通过三角函数的二倍角公式化简集合M,利用三角函数的有界性求出集合M;利用复数的模的公式化简集合N;利用集合的交集的定义求出交集【解答】解:M=y|y=|cos2xsin2x|=y|y=|cos2x|=y|0y1=x|1x1MN=x|0x1故选C【点评】本题考查三角函数的二倍角公式、三角函数的有界性、复数的模的公式、集合的交集的定义8(5分)(2011陕西)如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分当x1=6,x2=9,p=8.5时,x3等于()A11B10C8D7【考点】选择结构菁优网版
15、权所有【专题】创新题型【分析】利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分【解答】解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分根据x1=6,x2=9,不满足|x1x2|2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分因此由8.5=,解出x3=8故选C【点评】本题考查学生对算法基本逻辑结构中的循环结构和条结构的认识,考查学生对赋值语句的理解和认识,考查学生对程序框图表示算法的理解和认识
16、能力,考查学生的算法思想和简单的计算问题9(5分)(2011陕西)设(x1,y1),(x2,y2),(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()Ax和y的相关系数为直线l的斜率Bx和y的相关系数在0到1之间C当n为偶数时,分布在l两侧的样本点的个数一定相同D直线l过点(,)【考点】线性回归方程菁优网版权所有【专题】常规题型;压轴题【分析】对于所给的线性回归方程对应的直线,针对于直线的特点,回归直线一定通过这组数据的样本中心点,得到结果【解答】解:直线l是由这些样本点通过最小二乘法得到的线性回归直线,回归直线方程一定
17、过样本中心点,故选D【点评】本题考查线性回归方程的性质,考查样本中心点一定在回归直线上,本题是一个基础题,不需要运算就可以看出结果10(5分)(2011陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()ABCD【考点】古典概型及其概率计算公式菁优网版权所有【专题】计算题;压轴题【分析】利用分步计数原理求出甲、乙最后一小时他们所在的景点结果个数;利用古典概型概率公式求出值【解答】解:甲、乙最后一小时他们所在的景点共有66=36中情况甲、乙最后一小时他们同在一个景点共有6种情况由古典概型概
18、率公式后一小时他们同在一个景点的概率是P=故选D【点评】本题考查利用分步计数原理求完成事件的方法数、考查古典概型概率公式二、填空题:(本大题共5小题,每小题5分,共25分)11(5分)(2011陕西)设f(x)=,若f(f(1)=1,则a=1【考点】函数的值菁优网版权所有【专题】计算题【分析】先根据分段函数求出f(1)的值,然后将0代入x0的解析式,最后根据定积分的定义建立等式关系,解之即可【解答】解:f(x)=f(1)=0,则f(f(1)=f(0)=1即0a3t2dt=1=t3|0a=a3解得:a=1故答案为:1【点评】本题主要考查了分段函数的应用,以及定积分的求解,同时考查了计算能力,属于
19、基础题12(5分)(2011陕西)设nN+,一元二次方程x24x+n=0有整数根的充要条件是n=3或4【考点】充要条件;一元二次方程的根的分布与系数的关系菁优网版权所有【专题】简易逻辑【分析】由一元二次方程有实数根0得n4;又nN+,则分别讨论n为1,2,3,4时的情况即可【解答】解:一元二次方程x24x+n=0有实数根(4)24n0n4;又nN+,则n=4时,方程x24x+4=0,有整数根2;n=3时,方程x24x+3=0,有整数根1,3;n=2时,方程x24x+2=0,无整数根;n=1时,方程x24x+1=0,无整数根所以n=3或n=4故答案为:3或4【点评】本题考查一元二次方程有实根的充
20、要条件及分类讨论的策略13(5分)(2011陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2【考点】归纳推理菁优网版权所有【专题】计算题【分析】观察所给的等式,等号右边是12,32,52,72第n个应该是(2n1)2,左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,写出结果【解答】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右
21、边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题14(5分)(2011陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为2000(米)【考点】等差数列的前n项和菁优网版权所有【专题】应用题;压
22、轴题【分析】设在第n棵树旁放置所有树苗,利用等差数列求和公式,得出领取树苗往返所走的路程总和f(n)的表达式,再利用二次函数求最值的公式,求出这个最值【解答】解:记公路一侧所植的树依次记为第1棵、第2棵、第3棵、第20棵设在第n棵树旁放置所有树苗,领取树苗往返所走的路程总和为f(n) (n为正整数)则f(n)=10+20+10(n1)+10+20+10(20n)=101+2+(n1)+101+2+(20n)=5(n2n)+5(20n)(21n)=5(n2n)+5(n241n+420)=10n2210n+2100,f(n)=20(n221n+210),相应的二次函数图象关于n=10.5对称,结合
23、n为整数,可得当n=10或11时,f(n)的最小值为2000米故答案为:2000【点评】本题利用数列求和公式,建立函数模型,再用二次函数来解题,属于常见题型15(5分)(2011陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A(不等式选做题)若不等式a|x+1|+|x2|存在实数解,则实数a的取值范围是3,+)B(几何证明选做题)如图,B=D,AEBC,ACD=90,且AB=6,AC=4,AD=12,则AE=2C(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1: (为参数)和曲线C2:p=1上,则|AB|的
24、最小值为3【考点】圆的参数方程;绝对值不等式菁优网版权所有【专题】计算题;压轴题【分析】A通过作出函数y=|x+1|+|x2|的图象求出函数的最小值,然后结合图象可知a的取值范围;B先证明RtABERtADC,然后根据相似建立等式关系,求出所求即可;C先根据2=x2+y2,sin2+cos2=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径【解答】解:A先作出函数y=|x+1|+|x2|的图象可知函数的最小值为3,故当a3,+)上不等式a|x+1|+|x2|存在实数解,故答案为:3,+)BB=D,AEBC,ACD=90RtAB
25、ERtADC而AB=6,AC=4,AD=12,根据ADAE=ABAC解得:AE=2,故答案为:2C 消去参数得,(x3)2+(y4)2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x3)2+(y4)2=1上,点B在圆x2+y2=1上则|AB|的最小值为511=3故答案为:3【点评】本题主要考查了绝对值函数,以及三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题三、解答题:接答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)16(12分)(2011陕西)如图,在ABC中,ABC=60,BAC=90,AD是高,沿AD把ABD折起,使BDC=90()证
26、明:平面ADB平面BDC;()设E为BC的中点,求与夹角的余弦值【考点】平面与平面垂直的判定;用空间向量求直线间的夹角、距离菁优网版权所有【专题】计算题【分析】()翻折后,直线AD与直线DC、DB都垂直,可得直线与平面BDC垂直,再结合AD是平面ADB内的直线,可得平面ADB与平面垂直;()以D为原点,建立空间直角坐标系,分别求出D、B、C、A、E的坐标,从而得出向量、的坐标,最后根据空间向量夹角余弦公式,计算出与夹角的余弦值【解答】解:()折起前AD是BC边上的高,当ABD折起后,ADDC,ADDB,又DBDC=D,AD平面BDC,AD平面ADB平面ADB平面BDC()由BDC=90及()知
27、DA,DB,DC两两垂直,不防设|DB|=1,以D为坐标原点,分别以、所在直线x,y,z轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,0),=,=(1,0,0),与夹角的余弦值为cos,=【点评】图中DA、DB、DC三条线两两垂直,以D为坐标原点建立坐标系,将空间的几何关系的求解化为代数计算问题,使立体几何的计算变得简单17(12分)(2011陕西)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|()当P在圆上运动时,求点M的轨迹C的方程()求过点(3,0)且斜率的直线被C所截
28、线段的长度【考点】轨迹方程;直线与圆相交的性质菁优网版权所有【专题】计算题【分析】()由题意P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|,利用相关点法即可求轨迹;()由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度【解答】解:()设M的坐标为(x,y)P的坐标为(xp,yp)由已知得:P在圆上,即C的方程为()过点(3,0)且斜率为的直线方程为:,设直线与C的交点为A(x1,y1)B(x2,y2),将直线方程 即:,线段AB的长度为|AB|=【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了联立直线方程与曲线方程
29、进行整体代入,还有两点间的距离公式18(12分)(2011陕西)叙述并证明余弦定理【考点】余弦定理菁优网版权所有【专题】证明题【分析】先利用数学语言准确叙述出余弦定理的内容,并画出图形,写出已知与求证,然后开始证明方法一:采用向量法证明,由a的平方等于的平方,利用向量的三角形法则,由表示出,然后利用平面向量的数量积的运算法则化简后,即可得到a2=b2+c22bccosA,同理可证b2=c2+a22cacosB,c2=a2+b22abcosC;方法二:采用坐标法证明,方法是以A为原点,AB所在的直线为x轴建立平面直角坐标系,表示出点C和点B的坐标,利用两点间的距离公式表示出|BC|的平方,化简后
30、即可得到a2=b2+c22bccosA,同理可证b2=c2+a22cacosB,c2=a2+b22abcosC【解答】解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍;或在ABC中,a,b,c为A,B,C的对边,有a2=b2+c22bccosA,b2=c2+a22cacosB,c2=a2+b22abcosC证法一:如图,=b22bccosA+c2即a2=b2+c22bccosA同理可证b2=c2+a22cacosB,c2=a2+b22abcosC;证法二:已知ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴建立直角坐标系,则C(
31、bcosA,bsinA),B(c,0),a2=|BC|2=(bcosAc)2+(bsinA)2=b2cos2A2bccosA+c2+b2sin2A=b2+c22bccosA,同理可证b2=a2+c22accosB,c2=a2+b22abcosC【点评】此题考查学生会利用向量法和坐标法证明余弦定理,以及对命题形式出现的证明题,要写出已知求证再进行证明,是一道基础题19(12分)(2011陕西)如图,从点P1(0,0)做x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2,再从P2做x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;Pn,Q
32、n,记Pk点的坐标为(xk,0)(k=1,2,n)()试求xk与xk1的关系(2kn);()求|P1Q1|+|P2Q2|+|P3Q3|+|PnQn|【考点】利用导数研究曲线上某点切线方程;数列的求和菁优网版权所有【专题】综合题;转化思想【分析】()设出pk1的坐标,求出Qk1,利用导数的几何意义函数在切点处的导数值是曲线的曲线的斜率,利用点斜式求出切线方程,令y=0得到xk与xk+1的关系()求出|PkQk|的表达式,利用等比数列的前n项和公式求出和【解答】解:()设Pk1(xk1,0),由y=ex得点Qk1处切线方程为由y=0得xk=xk11(2kn)()x1=0,xkxk1=1,得xk=(
33、k1),Sn=|P1Q1|+|P2Q2|+|P3Q3|+|PnQn|=【点评】本题考查导数的几何意义:函数在切点处的导数值是曲线的曲线的斜率、考查等比数列的前n项和公式求出和20(13分)(2011陕西)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站()为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?()用X表示甲
34、、乙两人中在允许的时间内能赶到火车站的人数,针对()的选择方案,求X的分布列和数学期望【考点】随机抽样和样本估计总体的实际应用;离散型随机变量的期望与方差菁优网版权所有【专题】计算题;压轴题【分析】()Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,用频率估计相应的概率P(A1),P(A2)比较两者的大小,及P(B1),P(B2)的从而进行判断甲与乙路径的选择;()A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由(I)知P(A)=0.6,P(B)=0.9,且甲、乙相互独立,X可能取值为0,1,2,分别代入相
35、互独立事件的概率公式求解对应的概率,再进行求解期望即可【解答】解:()Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2用频率估计相应的概率可得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)P(A2),甲应选择Li,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)P(B1),乙应选择L2()A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知P(A)=0.6,P(B)=0.9,又由题意知,A,B独
36、立,P(x=1)=P(B+A)=P()P(B)+P(A)P()=0.40.9+0.60.1=0.42,P(X=2)=P(AB)=P(A)(B)=0.60.9=0.54,X的分布列: X0 1 2 P 0.040.42 0.54 EX=00.04+10.42+20.54=1.5【点评】本题主要考查了随机抽样用样本估计总体的应用,相互独立事件的概率的求解,离散型随机变量的数学期望与分布列的求解,属于基本知识在实际问题中的应用21(14分)(2011陕西)设函数f(x)定义在(0,+)上,f(1)=0,导函数f(x)=,g(x)=f(x)+f(x)()求g(x)的单调区间和最小值;()讨论g(x)与
37、的大小关系;()是否存在x00,使得|g(x)g(x0)|对任意x0成立?若存在,求出x0的取值范围;若不存在请说明理由【考点】利用导数研究函数的单调性;指、对数不等式的解法菁优网版权所有【专题】计算题;综合题;压轴题;开放型;分类讨论【分析】(I)根据题意求出f(x)的解析式,代入g(x)=f(x)+f(x)求出g(x),求导,令导数等于零,解方程,跟据g(x),g(x)随x的变化情况即可求出函数的单调区间和最小值;()构造函数h(x)=g(x),利用导数求该函数的最小值,从而求得g(x)与的大小关系;()证法一:假设存在x00,使|g(x)g(x0)|成立,即对任意x0,解此绝对值不等式,
38、取 时,得出矛盾;证法二 假设存在x00,使|g(x)g(x0)|成立,转化为求函数的值域,得出矛盾【解答】解:()由题设易知f(x)=lnx,g(x)=lnx+,g(x)=,令g(x)=0,得x=1,当x(0,1)时,g(x)0,故g(x)的单调递减区间是(0,1),当x(1,+)时,g(x)0,故g(x)的单调递增区间是(1,+),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,最小值为g(1)=1;()=lnx+x,设h(x)=g(x)=2lnxx+,则h(x)=,当x=1时,h(1)=0,即g(x)=,当x(0,1)(1,+)时,h(x)0,h(1)=0,因此,h(x)
39、在(0,+)内单调递减,当0x1,时,h(x)h(1)=0,即g(x),当x1,时,h(x)h(1)=0,即g(x),()满足条件的x0 不存在证明如下:证法一 假设存在x00,使|g(x)g(x0)|成立,即对任意x0,有 ,(*)但对上述x0,取 时,有 Inx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x00,使|g(x)g(x0)| 成立证法二 假设存在x00,使|g(x)g(x0)|成立由()知, 的最小值为g(x)=1 又Inx,而x1 时,Inx 的值域为(0,+),x1 时,g(x) 的值域为1,+),从而可取一个x11,使 g(x1)g(x0)+1,即g(x1)g(x0)1,故|g(x1)g(x0)|1,与假设矛盾 不存在x00,使|g(x)g(x0)|成立【点评】此题是个难题考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f(x)=0根是否在区间0,1内进行讨论,体现了分类讨论的思想方法,增加了题目的难度其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力20