收藏 分销(赏)

计算机网络技术讲义讲义教材.doc

上传人:人****来 文档编号:4892780 上传时间:2024-10-17 格式:DOC 页数:277 大小:939.04KB
下载 相关 举报
计算机网络技术讲义讲义教材.doc_第1页
第1页 / 共277页
计算机网络技术讲义讲义教材.doc_第2页
第2页 / 共277页
计算机网络技术讲义讲义教材.doc_第3页
第3页 / 共277页
计算机网络技术讲义讲义教材.doc_第4页
第4页 / 共277页
计算机网络技术讲义讲义教材.doc_第5页
第5页 / 共277页
点击查看更多>>
资源描述

1、第1章计算机网络概论1.1 计算机网络的定义、演变和发展1.2 计算机网络的功能与应用第2章计算机网络基础知识2.1 数据通信技术2.2 数据编码技术和时钟同步2.3 数据交换技术2.4 拓朴结构与传输媒体 2.5 差错控制方法 第3章计算机网络体系结构及协议3.1 网络体系结构及OSI基本参考模型3.2 物理层3.3 数据链路层3.4 网络层3.5 高层协议介绍3.6 TCP/TP协议簇第4章局域网4.1 局域网的主要技术4.2 局域网的参考模型与协议标准4.3 CSMA/CD媒体访问控制4.4 令牌环媒体访问控制4.5 令牌总线媒体访问控制4.6 光纤分布数据接口FDDI4.7 Novel

2、l NetWare局域网操作系统第5章计算机网络实用技术 5.1 综合业务数字网(ISDN)及异步传输模式(ATM)5.2 帧中继(Frame Relay)5.3 快速/高速局域网5.4 因特网(Internet)5.5 内联网(Intranet)5.6 网络管理基础与网络安全 第1章计算机网络概论 前言:人类社会已进入信息时代;世界各国积极建设信息高速公路;计算机网络是信息高速公路的基础;Internet最终改变我们的生活方式,人类进入网络文化时代。1.1 计算机网络的定义、演变和发展 1.1.1 计算机网络的定义计算机网络:就是利用通信设备和线路将地理位置不同的、功能独立的多个计算机系统互

3、连起来,以功能完善的网络软件(即网络通信协议、信息交换方式、网络操作系统等)实现网络中资源共享和信息传递的系统。 图1.1 一个典型的计算机网络示例 计算机网络:资源子网通信子网资源子网:主机Host终端erminal通信子网:通信链路组成网络节点:分组交换设备PSE、分组装卸设备PAD、集中器C、网络控制中心NCC、网间连接器G。统称为接口住处处理机IMP。1.1.2 计算机网络的演变和发展网络发展三阶段:面向终端的网络;计算机计算机网络;开放式标准化网络。1.面向终端的计算机网络以单个计算机为中心的远程联机系统,构成面向终端的计算机网络。用一台中央主机连接大量的地理上处于分散位置的终端。如

4、50年代初美国的SAGE系统。为减轻中心计算机的负载,在通信线路和计算机之间设置了一个前端处理机FEP或通信控制器CCU专门负责与终端之间的通信控制,使数据处理和通信控制分工。在终端机较集中的地区,采用了集中管理器(集中器或多路复用器)用低速线路把附近群集的终端连起来,通过MODEM及高速线路与远程中心计算机的前端机相连。这样的远程联机系统既提高了线路的利用率,又节约了远程线路的投资。 图1.2 单计算机为中心的远程联机系统 2.计算机计算机网络60年代中期,出现了多台计算机互连的系统,开创了“计算机计算机”通信时代,并存多处理中心,实现资源共享。美国的ARPA网,IBM的SNA网,DEC的D

5、NA网都是成功的典例。这个时期的网络产品是相对独立的,未有统一标准。3.开放式标准化网络由于相对独立的网络产品难以实现互连,国际标准化组织ISO(Internation Standards Organization)于1984年颁布了一个称为“开放系统互连基本参考模型”的国际标准ISO 7498,简称OSI/RM。即著名的OSI七层模型。从此,网络产品有了统一标准,促进了企业的竞争,大大加速了计算机网络的发展。1.1.3 计算机网络实例简介1.因特网(Internet)1969年-ARPANET,ARM模型,早于OSI模型,低三层接近OSI,采用TCP/IP协议。1988年-NSFNET ,O

6、SI模型,采用标准的TCP/IP协议,成为Internet的主干网。两种服务公司:进入因特网产品服务公司ISP,因特网信息服务公司ICP。 2.公用数据网PDN(Public Data Network)计算机网络中负责完成节点间通信任务的通信子网称为公用数据网。如英国的PSS、法国的TRANSPAC、加拿大的DATAPAC、美国的TELENET、欧共体的EURONET、日本的DDX-P等都是公用数据网。我国的公用数据网CHINAPAC(CNPAC)于1989年开通服务。这些公用数据网对于外部用户提供的界面大都采用了国际标准,即国际电报电话咨询委员会CCITT制定的X.25建议。规定了用分组方式

7、工作和公用数据网连接的数据终端设备DTE和数据电路终接设备DCE之间的接口。在计算机接入公用数据网的场合下,DTE就是指计算机,而公用数据网中的分组交换节点就是DCE。X.25是为同一个网络上用户进行相互通信而设计的。而现在的X.75是为各种网络上用户进行相互通信而设计的。X.75取代了X.25。3.SNA(System Network Architecture)SNA是IBM公司的计算机网络产品设计规范。1974年SNA适用于面向终端的计算机网络;1976年SNA适用于树型(带树根)的计算机网络;1979年SNA适用于分布式(不带根)的网络;1985年SNA可支持与局域网组成的任意拓扑结构的

8、网络。SNA虽早于OSI,但底层却很相似。 第1章计算机网络概论 1.2 计算机网络的功能与应用 1.2.1 计算机网络的功能1.硬件资源共享2.软件资源共享3.用户间信息交换1.2.2 计算机网络的分类1.按网络的分布范围分类:广域网WAN、局域网LAN、城域网MAN2.按网络的交换方式分类:电路交换、报文交换、分组交换3.按网络的拓扑结构分类:星形、总线、环形、树形、网形4.按网络的传输媒体分类:双绞线、同轴电缆、光纤、无线5.按网络的信道分类:窄带、宽带6.按网络的用途分类:教育、科研、商业、企业1.2.3 计算机网络的应用1.办公自动化OA(Office Automation)2.电子

9、数据交换EDI(Electronic Data Interchange)3.远程交换(Telecommuting)4.远程教育(Distance Education)5.电子银行6.电子公告板系统BBS(Bulletin Board System)7.证券及期货交易8.广播分组交换9.校园网(Campus Network)10.信息高速公路11.企业网12.智能大厦和结构化综合布线系统1.2.4 计算机网络的标准制定机构1.国际标准化组织(ISO)2.国际电报电话咨询委员会(CCITT)3.美国国家标准局(NBS)4.美国国家标准学会(ANSI)5.欧洲计算机制造商协会(ECMA)第2章计算机

10、网络基础知识 2.1 数据通信技术2.1.1 模拟数据通信和数字数据通信 1.几个术语的解释1)数据定义为有意义的实体。数据可分为模拟数据和数字数据。模拟数据是在某区间内连续变化的值;数字数据是离散的值。2)信号是数据的电子或电磁编码。信号可分为模拟信号和数字信号。模拟信号是随时间连续变化的电流、电压或电磁波;数字信号则是一系列离散的电脉冲。可选择适当的参量来表示要传输的数据。3)信息是数据的内容和解释。4)信源通信过程中产生和发送信息的设备或计算机。5)信宿通信过程中接收和处理信息的设备或计算机。6)信道信源和信宿之间的通信线路。2.模拟信号和数字信号的表示模拟信号和数字信号可通过参量(幅度

11、)来表示: 图2.1 模拟信号、数字信号的表示 3.模拟数据和数字数据的表示模拟数据和数字数据都可以用模拟信号或数字信号来表示,因而无论信源产生的是模拟数据还是数字数据,在传输过程中都可以用适合于信道传输的某种信号形式来传输。1)模拟数据可以用模拟信号来表示。模拟数据是时间的函数,并占有一定的频率范围,即频带。这种数据可以直接用占有相同频带的电信号,即对应的模拟信号来表示。模拟电话通信是它的一个应用模型。2)数字数据可以用模拟信号来表示。如Modem可以把数字数据调制成模拟信号;也可以把模拟信号解调成数字数据。用Modem拨号上网是它的一个应用模型。3)模拟数据也可以用数字信号来表示。对于声音

12、数据来说,完成模拟数据和数字信号转换功能的设施是编码解码器CODEC。它将直接表示声音数据的模拟信号,编码转换成二进制流近似表示的数字信号;而在线路另一端的CODEC,则将二进制流码恢复成原来的模拟数据。数字电话通信是它的一个应用模型。4)数字数据可以用数字信号来表示。数字数据可直接用二进制数字脉冲信号来表示,但为了改善其传播特性,一般先要对二进制数据进行编码。数字数据专线网DDN网络通信是它的一个应用模型。4.数据通信的长距离传输及信号衰减的克服1)模拟信号和数字信号都可以在合适的传输媒体上进行传输(如图2.2); 图2.2 模拟数据、数字数据的模拟信号、数字信号的传输表示 2)模拟信号无论

13、表示模拟数据还是数字数据,在传输一定距离后都会衰减。克服的办法是用放大器来增强信号的能量,但噪音分量也会增强,以至引起信号畸变。3)数字信号长距离传输也会衰减,克服的办法是使用中继器,把数字信号恢复为0、1的标准电平后继续传输。2.1.2 数据通信中的主要技术指标1.数据传输速率1)数据传输速率-每秒传输二进制信息的位数,单位为位/秒,记作bps或b/s。计算公式: S=1/T*log2N(bps).式中 T为一个数字脉冲信号的宽度(全宽码)或重复周期(归零码)单位为秒; N为一个码元所取的离散值个数。通常 N=2K,K为二进制信息的位数,K=log2N。 N=2时,S=1/T,表示数据传输速

14、率等于码元脉冲的重复频率。2)信号传输速率-单位时间内通过信道传输的码元数,单位为波特,记作Baud。计算公式: B=1/T (Baud) .式中 T为信号码元的宽度,单位为秒信号传输速率,也称码元速率、调制速率或波特率。由、式得:S=B*log2N(bps) .或B=S/log2N(Baud).例1采用四相调制方式,即N=4,且T=833x10-6秒,则S=1/T*log2N=1/(833x10-6)*log24=2400 (bps)B=1/T=1/(833x10-6)=1200 (Baud)2.信道容量1)信道容量表示一个信道的最大数据传输速率,单位:位/秒(bps)信道容量与数据传输速率

15、的区别是,前者表示信道的最大数据传输速率,是信道传输数据能力的极限,而后者是实际的数据传输速率。像公路上的最大限速与汽车实际速度的关系一样。2)离散的信道容量奈奎斯特(Nyquist)无噪声下的码元速率极限值B与信道带宽H的关系:B=2*H (Baud).奈奎斯特公式-无噪信道传输能力公式:C=2*H*log2N (bps).式中 H为信道的带宽,即信道传输上、下限频率的差值,单位为Hz; N为一个码元所取的离散值个数。例2普通电话线路带宽约3kHz,则码元速率极限值B=2*H=2*3k=6kBaud ;若码元的离散值个数N=16,则最大数据传输速率C=2*3k*log216=24kbps。3

16、)连续的信道容量香农公式-带噪信道容量公式:C=H*log2(1+S/N) (bps) .式中 S为信号功率, N为噪声功率, S/N为信噪比,通常把信噪比表示成10lg(S/N)分贝(dB)。例3已知信噪比为30dB,带宽为3kHz,求信道的最大数据传输速率。 10lg(S/N)=30 S/N=1030/10=1000 C=3klog2(1+1000)30k bps3.误码率-二进制数据位传输时出错的概率。它是衡量数据通信系统在正常工作情况下的传输可靠性的指标。在计算机网络中,一般要求误码率低于10-6,若误码率达不到这个指标,可通过差错控制方法检错和纠错。误码率公式:Pe=Ne/N .式中

17、 Ne为其中出错的位数; N 为传输的数据总数。2.1.3 通信方式1.并行通信方式并行通信传输中有多个数据位,同时在两个设备之间传输。发送设备将这些数据位通过对应的数据线传送给接收设备,还可附加一位数据校验位。接收设备可同时接收到这些数据,不需要做任何变换就可直接使用。并行方式主要用于近距离通信。计算机内的总线结构就是并行通信的例子。这种方法的优点是传输速度快,处理简单。 图2.3 并行数据传输 2.串行通信方式串行数据传输时,数据是一位一位地在通信线上传输的,先由具有几位总线的计算机内的发送设备,将几位并行数据经并-串转换硬件转换成串行方式,再逐位经传输线到达接收站的设备中,并在接收端将数

18、据从串行方式重新转换成并行方式,以供接收方使用。串行数据传输的速度要比并行传输慢得多,但对于覆盖面极其广阔的公用电话系统来说具有更大的现实意义。 图2.4 串行数据传输 3.串行通信的方向性结构串行数据通信的方向性结构有三种,即单工、半双工和全双工。 图2.5 单工、半双工、全双工 单工数据传输只支持数据在一个方向上传输;半双工数据传输允许数据在两个方向上传输,但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信;全双工数据通信允许数据同时在两个方向上传输,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。 第2章计算机网络基

19、础知识 2.2 数据编码技术和时钟同步2.2.1 数字数据的模拟信号编码 为了利用廉价的公共电话交换网实现计算机之间的远程通信,必须将发送端的数字信号变换成能够在公共电话网上传输的音频信号,经传输后再在接收端将音频信号逆变换成对应的数字信号。实现数字信号与模拟信号互换的设备称作调制解调器(Modem)。 图2.6 远程系统中的调制解调器 模拟信号传输的基础是载波,载波具有三大要素:幅度、频率和相位,数字数据可以针对载波的不同要素或它们的组合进行调制。1.数字调制的基本形式数字调制的三种基本形式:移幅键控法ASK、移频键控法FSK、移相键控法PSK。 图2.7 数字调制的三种基本形式 在ASK方

20、式下,用载波的两种不同幅度来表示二进制的两种状态。ASK方式容易受增益变化的影响,是一种低效的调制技术。在电话线路上,通常只能达到1200bps的速率。在FSK方式下,用载波频率附近的两种不同频率来表示二进制的两种状态。在电话线路上,使用FSK可以实现全双工操作,通常可达到1200bps的速率。在PSK方式下,用载波信号相位移动来表示数据。PSK可以使用二相或多于二相的相移,利用这种技术,可以对传输速率起到加倍的作用。由PSK和ASK结合的相位幅度调制PAM,是解决相移数已达到上限但还要提高传输速率的有效方法。2.公共电话交换网中使用调制解调器的必要性公共电话交换网是一种频带模拟信道,音频信号

21、频带为300Hz3400Hz,而数字信号频宽为0Hz几千兆Hz。若不加任何措施利用模拟信道来传输数字信号,必定出现极大的失真和差错。所以,要在公共电话网上传输数字数据,必须将数字信号变换成电话网所允许的音频频带范围300Hz3400Hz。 2.2.2 数字数据的数字信号编码 数字信号可以直接采用基带传输。基带传输就是在线路中直接传送数字信号的电脉冲,它是一种最简单的传输方式,近距离通信的局域网都采用基带传输。基带传输时,需要解决的问题是数字数据的数字信号表示及收发两端之间的信号同步两个方面。1.数字数据的数字信号表示对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数

22、字信号由矩形脉冲组成。 a)单极性脉冲b)双极性脉冲c)单极性归零脉冲d)双极性归零脉冲e)交替双极性归零脉冲图2.8 基脉冲编码方案 a)单极性不归零码,无电压表示0,恒定正电压表示1,每个码元时间的中间点是采样时间,判决门限为半幅电平。b)双极性不归零码,1码和0码都有电流,1为正电流,0为负电流,正和负的幅度相等,判决门限为零电平。c)单极性归零码,当发1码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发0码时,仍然不发送电流。d)双极性归零码,其中1码发正的窄脉冲,0码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。2.归零

23、码和不归零码、单极性码和双极性码的特点不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的。3.同步过程1)位同步位同步又称同步传输,它是使接收端对每一位数据都要和发送端保持同步。实现位同步的方法可分为外同步法和自同步法两种。在外同步法中,接收端的同步信号事先由发送端送来,而不是

24、自己产生也不是从信号中提取出来。即在发送数据之前,发送端先向接收端发出一串同步时钟脉冲,接收端按照这一时钟脉冲频率和时序锁定接收端的接收频率,以便在接收数据的过程中始终与发送端保持同步。自同步法是指能从数据信号波形中提取同步信号的方法。典型例子就是著名的曼彻斯特编码,常用于局域网传输。在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号;从高到低跳变表示1,从低到高跳变表示0。还有一种是差分曼彻斯特编码,每位中间的跳变仅提供时钟定时,而用每位开始时有无跳变表示0或1,有跳变为0,无跳变为1。 图2.9 数字信号的同步编码 两种曼彻斯特编码是将时钟和数据包含在数据流中,

25、在传输代码信息的同时,也将时钟同步信号一起传输到对方,每位编码中有一跳变,不存在直流分量,因此具有自同步能力和良好的抗干扰性能。但每一个码元都被调成两个电平,所以数据传输速率只有调制速率的1/2。2)群同步在数据通信中,群同步又称异步传输。是指传输的信息被分成若干“群”。数据传输过程中,字符可顺序出现在比特流中,字符间的间隔时间是任意的,但字符内各个比特用固定的时钟频率传输。字符间的异步定时与字符内各个比特间的同步定时,是群同步即异步传输的特征。群同步是靠起始和停止位来实现字符定界及字符内比特同步的。起始位指示字符的开始,并启动接收端对字符中比特的同步;而停止位则是作为字符间的间隔位设置的,没

26、有停止位,下一字符的起始位下降沿便可能丢失。群同步传输每个字符由四部组成:1)1位起始位,以逻辑0表示;2)58位数据位,即要传输的字符内容;3)1位奇偶校验位,用于检错;4)12位停止位,以逻辑1表示,用作字符间的间隔。 图2.10 群同步的字符格式 2.2.3 模拟数据的数字信号编码 1.脉码调制PCM。脉码调制是以采样定理为基础,对连续变化的模拟信号进行周期性采样,利用有效信号最高频率或其带宽倍的采样频率,通过低通滤波器从这些采样中重新构造出原始信号。采样定理表达公式:Fs(=1/Ts)2Fmax或Fs2Bs式中Ts为采样周期Fs为采样频率Fmax为原始信号的最高频率Bs(=Fmax-F

27、min)为原始信号的带宽2.模拟信号数字化的三步骤1)采样,以采样频率Fs把模拟信号的值采出;2)量化,使连续模拟信号变为时间轴上的离散值;3)编码,将离散值变成一定位数的二进制数码。 图2.11 脉码调制(PCM)原理 2.2.4 多路复用技术 多路复用技术就是把许多个单个信号在一个信道上同时传输的技术。频分多路复用FDM和时分多路复用TDM是两种最常用的多路复用技术。1.频分多路复用 FDM技术原理在物理信道的可用带宽超过单个原始信号所需带宽情况下,可将该物理信道的总带宽分割成若干个与传输单个信号带宽相同(或略宽)的子信道,每个子信道传输一路信号,这就是步分多路复用。多路原始信号在步分复用

28、前,先要通过频谱搬移技术将各路信号的频谱搬移到物理信道频谱的不同段上,使各信号的带宽不相互重叠,然后用不同的频率调制每一个信号,每个信号要一个样以它的载波频率为中心的一定带宽的通道。为了防止互相干扰,使用保护带来隔离每一个通道。 (a)频分多路复用(b)时分多路复用图2.12 频分多路复用与时分多路复用 2.时分多路复用 TDM技术原理若媒体能达到的位传输速率超过传输数据所需的数据传输速率,可采用时分多路复用 TDM技术,即将一条物理信道按时间分成若干个时间片轮流地分配给多个信号使用。每一时间片由复用的一个信号占用,这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个数字信号。时分

29、多路复用 TDM不仅局限于传输数字信号,也可同时交叉传输模拟信号。3.T1载波与E1载波的帧结构1)T1载波Bell系统的T1载波利用脉码调制PCM和时分TDM技术,使24路采样声音信号复用一个通道。每一个帧包含 193位,每一帧用 125us时间传送。T1系统的数据传输速率为1.544Mbps。 图2.13 T1载波帧结构 2)E1载波CCITT建议了一种2.048Mbps速率的 PCM载波标准,称为E1载波(欧洲标准)。它每一帧开始处有8位同步作用,中间有8位作用信令,在组织30路8位数据,全帧包括256位,每一帧用 125us时间传送。可计算出E1系统的数据传输速率为256位/125us

30、=2.048Mbps。2.2.5 异步传输和同步传输1.异步传输方式中,一次只传输一个字符。每个字符用一位起始位引导、一位停止位结束。在没有数据发送时,发送方可发送连续的停止位。接收方根据1至0的跳变来判断一个新字符的开始,然后接收字符中的所有位。2.同步传输时,为使接收双方能判别数据块的开始和结束,还需要在每个数据块的开始处和结束处各加一个帧头和一个帧尾,加有帧头、帧尾的数据称为一帧。帧头和第2章计算机网络基础知识 2.3 数据交换技术数据经编码后在通信线路上进行传输,按数据传送技术划分,交换网络又可分为电路交换网、报文交换网和分组交换网。图2.14为一个交换网络的拓扑结构 图2.14 交换

31、网络的拓扑结构 2.3.1 电路交换的工作原理 1.电路交换的三个过程1)电路建立:在传输任何数据之前,要先经过呼叫过程建立一条端到端的电路。如图2.14所示,若H1站要与H3站连接,典型的做法是,H1站先向与其相连的A节点提出请求,然后A节点在通向C节点的路径中找到下一个支路。比如A节点选择经B节点的电路,在此电路上分配一个未用的通道,并告诉B它还要连接C节点;B再呼叫C,建立电路BC,最后,节点C完成到H3站的连接。这样A与C之间就有一条专用电路ABC,用于H1站与H3站之间的数据传输。2)数据传输:电路ABC建立以后,数据就可以从A发送到B,再由B交换到C;C也可以经B向A发送数据。在整

32、个数据传输过程中,所建立的电路必须始终保持连接状态。3)电路拆除:数据传输结束后,由某一方(A或C)发出拆除请求,然后逐节拆除到对方节点。2.电路交换技术的优缺点及其特点1)优点:数据传输可靠、迅速,数据不会丢失且保持原来的序列。2)缺点:在某些情况下,电路空闲时的信道容易被浪费:在短时间数据传输时电路建立和拆除所用的时间得不偿失。因此,它适用于系统间要求高质量的大量数据传输的情况。3)特点:在数据传送开始之前必须先设置一条专用的通路。在线路释放之前,该通路由一对用户完全占用。对于猝发式的通信,电路交换效率不高。 2.3.2 报文交换的工作原理 问题的提出:当端点间交换的数据具有随机性和突发性

33、时,采用电路交换方法的缺点是信道容量和有效时间的浪费。采用报文交换则不存在这种问题。1.报文交换原理报文交换方式的数据传输单位是报文,报文就是站点一次性要发送的数据块,其长度不限且可变。当一个站要发送报文时,它将一个目的地址附加到报文上,网络节点根据报文上的目的地址信息,把报文发送到下一个节点,一直逐个节点地转送到目的节点。每个节点在收到整个报文并检查无误后,就暂存这个报文,然后利用路由信息找出下一个节点的地址,再把整个报文传送给下一个节点。因此,端与端之间无需先通过呼叫建立连接。一个报文在每个节点的延迟时间,等于接收报文所需的时间加上向下一个节点转发所需的排队延迟时间之和。2.报文交换的特点

34、1)报文从源点传送到目的地采用存储-转发方式,在传送报文时,一个时刻仅占用一段通道。2)在交换节点中需要缓冲存储,报文需要排队,故报文交换不能满足实时通信的要求。3.报文交换的优点1)电路利用率高。由于许多报文可以分时共享两个节点之间的通道,所以对于同样的通信量来说,对电路的传输能力要求较低。2)在电路交换网络上,当通信量变得很大很大时,就不能接受新的呼叫。而在报文交换网络上,通信量大时仍然可以接收报文,不过传送延迟会增加。3)报文交换系统可以把一个报文发送到多个目的地,而电路交换网络很难做到这一点。4)报文交换网络可以进行速度和代码的转换。4.报文交换的缺点1)不能满足实时或交互式的通信要求

35、,报文经过网络的延迟时间长且不定。2)有时节点收到过多的数据而无空间存储或不能及时转发时,就不得不丢弃报文,而且发出的报文不按顺序到达目的地。2.3.3 分组交换的工作原理 分组交换是报文交换的一种改进,它将报文分成若干个分组,每个分组的长度有一个上限,有限长度的分组使得每个节点所需的存储能力降低了,分组可以存储到内存中,提高了交换速度。它适用于交互式通信,如终端与主机通信。分组交换有虚电路分组交换和数据报分组交换两种。它是计算机网络中使用最广泛的一种交换技术。 1.虚电路分组交换原理与特点在虚电路分组交换中,为了进行数据传输,网络的源节点和目的节点之间要先建一条逻辑通路。每个分组除了包含数据

36、之外还包含一个虚电路标识符。在预先建好的路径上的每个节点都知道把这些分组引导到哪里去,不再需要路由选择判定。最后,由某一个站用清除请求分组来结束这次连接。它之所以是“虚”的,是因为这条电路不是专用的。虚电路分组交换的主要特点是:在数据传送之前必须通过虚呼叫设置一条虚电路。但并不像电路交换那样有一条专用通路,分组在每个节点上仍然需要缓冲,并在线路上进行排队等待输出。2.数据报分组交换原理与特点在数据报分组交换中,每个分组的传送是被单独处理的。每个分组称为一个数据报,每个数据报自身携带足够的地址信息。一个节点收到一个数据报后,根据数据报中的地址信息和节点所储存的路由信息,找出一个合适的出路,把数据

37、报原样地发送到下一节点。由于各数据报所走的路径不一定相同,因此不能保证各个数据报按顺序到达目的地,有的数据报甚至会中途丢失。整个过程中,没有虚电路建立,但要为每个数据报做路由选择。2.3.4 各种数据交换技术的性能比较 图2.15 几种交换方法的时序图 1.电路交换:在数据传输之前必须先设置一条完全的通路。在线路拆除(释放)之前,该通路由一对用户完全占用。电路交换效率不高,适合于较轻和间接式负载使用租用的线路进行通信。2.报文交换:报文从源点传送到目的地采用存储转发的方式,报文需要排队。因此报文交换不适合于交互式通信,不能满足实时通信的要求。3.分组交换:分组交换方式和报文交换方式类似,但报文

38、被分成分组传送,并规定了最大长度。分组交换技术是在数据网中最广泛使用的一种交换技术,适用于交换中等或大量数据的情况。 第2章计算机网络基础知识 2.4 拓扑结构与传输媒体2.4.1拓扑结构 网络拓扑是指网络形状,或者是它在物理上的连通性。网络的拓扑结构主要有:星形拓扑、总线拓扑、环形拓扑、树形拓扑、混合拓扑及网形拓扑。 图2.16 各种网络拓扑 拓扑结构的选择往往与传输媒体的选择及媒体访问控制方法的确定紧密相关。在选择网络拓扑结构时,应考虑的因素有下列几点:1)可靠性。 2)费用。 3)灵活性。 4)响应时间和吞吐量。1.星形拓扑的特点及优缺点优点:1)控制简单;2)故障诊断和隔离容易;3)方

39、便服务;缺点:1)电缆长度和安装工作量可观;2)中央节点负担较重,形成瓶颈;3)各站点的分布处理能力较低。2.总线拓扑的特点及优缺点优点:1)总线结构所需电缆数量少;2)结构简单又是无源工作,有较高的可靠性;3)易于扩充,增减用户方便。缺点:1)传输距离有限,通信范围受到限制;2)故障诊断和隔离困难;3)分布式协议不保证信息及时传送,不具实时功能。站点必须是智能的,要有媒体访问控制功能,增加站点软件和硬件的开销。3.环形拓扑的特点及优缺点优点:1)电缆长度短;2)增减工作站时只需简单连接;3)可用光纤。缺点:1)节点故障会引起全网的故障;2)故障难检测;3)媒体访问协议都用令牌传递方式,在负载

40、很轻时,信道利用率较低。4.树形拓扑的定义及优缺点树形拓扑:从总线拓扑演变而来,像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可带子分支。树根接收各站点发送的数据,然后再广播发送到全网。优点:1)易于扩展;2)故障隔离较容易。缺点:1)节点对根依赖性太大,若根发生故障,则全网不能正常工作。5.混合形拓扑的定义及优缺点混合形拓扑:将两种单一拓扑结构混合起来,取两者的优点构成的拓扑。优点:1)故障诊断和隔离方便;2)易于扩展;3)安装方便;缺点:1)需用带智能的集中器;2)集中器到各站点的电缆长度会增加。6.网形拓扑的特点及优缺点优点:1)应用广泛;2)不受瓶颈问题和失效问题的影响。缺点:

41、1)结构较复杂,网络协议也复杂,建设成本高。2.4.2传输媒体 传输媒体是通信网络中发送方和接收方之间的物理通路,计算机网络中采用的传输媒体分有线和无线两大类。传输媒体的特性对网络数据通信的质量有很大影响,这些特征是:物理特性:说明传输媒体的特性。传输特性:包括是使用模拟信号发送还是使用数字信号发送、调制技术、传输容量及传输频率范围。连通性:采用点到点连接还是多点连接。地理范围:在不用中间设备并将失真限制在允许范围内的情况下,整个网络所允许的最大距离。抗干扰性:防止噪音、电磁干扰对传输数据影响的能力。相对价格:包括元件、安装和维护等价格。1.有线传输媒体1)双绞线(TP)-由螺旋状扭在一起的两

42、根绝缘导线组成。双绞线一般分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)。计算机网络中最常用的是第三类和第五类非屏蔽双绞线。物理特性:铜质线芯,传导性能良好。传输特性:可用于传输模拟信号和数字信号,对于模拟信号,约5-6公里需要一个放大器;对于数字信号,约2-3公里需要一个中继器。双绞线的带宽达268kHz。对于模拟信号,可用频分多路复用技术把它分成24路来传输音频模拟信号,根据目前的Modem技术,若使用移相键控法PSK,每路可达9600bps以上,这样,在一条24路的双绞线上,总传输率可达230kbps。对于数字信号,使用T1线路总传输率可达1.544Mbps。达到更高传输率也是可能的,

43、但与距离有关。对于局域网(10BASE-T和100BASE-T总线),传输速率可达10bps-100bps。常用的3类双绞线和5类双绞线电缆均由4对双绞线组成,3类双绞线传输速率可达10bps,5类双绞线传输速率可达100bps。但与距离有关。连通性:可用于点到点连接或多点连接。地理范围:对于局域网,速率100Kbps,可传输1公里;速率10Mbps-100Mbps,可传输100米。抗干扰性:低频(10kHz以下)抗干扰性能强于同轴电缆,高频(10-100kHz)抗干扰性能弱于同轴电缆。相对价格:比同轴电缆和光纤便宜得多。2)同轴电缆-由绕同一轴线的两个导体所组成,被广泛用于局域网中。为保持同

44、轴电缆的正确电气特性,电缆必须接地,同时两头要有端接器来削弱信号反射作用。 图2.17 同轴电缆 物理特性:单根同轴电缆直径约为1.02-2.54cm,可在较宽频范围工作。传输特性:基带同轴电缆仅用于数字传输,阻抗为50,并使用曼彻斯特编码,数据传输速率最高可达10Mbps。宽带同轴电缆可用于模拟信号和数字信号传输,阻抗为75,对于模拟信号,带宽可达300-450MHz。在CATV电缆上,每个电视通道分配6MHz带宽,而广播通道的带宽要窄得多,因此,在同轴电缆上使用频分多路复用技术可以支持大量的视、音频通道。基带50连通性:可用于点到点连接或多点连接。地理范围:基带同轴电缆的最大距离限制在几公里;宽带电

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服