资源描述
<p><span id="_baidu_bookmark_start_0" style="display: none; line-height: 0px;"></span>七年级上册期末考试试卷精选含详细答案
一、选择题
1.对于方程,去分母后得到的方程是( )
A. B. C. D.
2.如图,点,在数轴上,点为原点,.按如图所示方法用圆规在数轴上截取,若点表示的数是,则点表示的数是( )
A. B.
C. D.
3.在四个数中,属于无理数的是( )
A. B. C. D.
4.下列方程是一元一次方程的是( )
A.=5x B.x2+1=3x C.=y+2 D.2x﹣3y=1
5.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为
A. B. C.9a D.
6.一个几何体的表面展开图如图所示,则这个几何体是( )
A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
7.若代数式3x﹣9的值与﹣3互为相反数,则x的值为( )
A.2 B.4 C.﹣2 D.﹣4
8.如果一个有理数的绝对值是,那么这个数一定是( )
A. B. C.或 D.无法确定
9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
10.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有 ( )
①AP=BP;②.BP=AB;③AB=2AP;④AP+PB=AB.
A.1个 B.2个 C.3个 D.4个
二、填空题
11.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)
…………
12.,则的补角的度数为______.
13.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.
14.分解因式: =_ ___________
15.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.
16.当x= 时,多项式3(2-x)和2(3+x)的值相等.
17.已知一个角的补角是它余角的3倍,则这个角的度数为_____.
18.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.
19.观察一列有规律的单项式:,,,,,它的第个单项式是______.
20.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.
三、解答题
21.解不等式组,并在数轴上表示解集.
22.解方程:(1) (2)
23.先化简,再求值:,其中,.
24.先化简,再求值:,其中,.
25.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:
(1)一个暖瓶与一个水杯的售价分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.
26.计算:|﹣2|+(﹣1)2019+×(﹣3)2
27.计算: -22×(-9)+16÷(-2)3-│-4×5│
28.某中学学生步行到郊外旅行,七年级班学生组成前队,步行速度为4千米小时,七班的学生组成后队,速度为6千米小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米小时.
后队追上前队需要多长时间?
后队追上前队的时间内,联络员走的路程是多少?
七年级班出发多少小时后两队相距2千米?
29.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.
(1)若点C为原点,BC=1,则点A,B所对应的数分别为 , ,m的值为 ;
(2)若点B为原点,AC=6,求m的值.
(3)若原点O到点C的距离为8,且OC=AB,求m的值.
30.如图,为直线上一点,平分,.
(1)若,求和的度数;
(2)猜想:是否平分?请直接写出你猜想的结论;
(3)与互余的角有:______.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
方程两边同乘以6即可求解.
【详解】
,
方程两边同乘以6可得,
2x-6=3(1+2x).
故选D.
【点睛】
本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.
2.B
解析:B
【解析】
【分析】
根据题意和数轴可以用含a的式子表示出点B表示的数,从而得到点表示的数.
【详解】
解:由点为原点,,可知A、B表示的数互为相反数,
点表示的数是,所以B表示的数为-,
又因为,所以点表示的数为.
故选B.
【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
3.B
解析:B
【解析】
【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.
【详解】
0.23是有限小数,是有理数,不符合题意,
是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
是分数,是有理数,不符合题意,
故选:B.
【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.
4.A
解析:A
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.
【详解】
解:A、=5x符合一元一次方程的定义;
B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;
C、=y+2中等号左边不是整式,不是一元一次方程;
D、2x﹣3y=1含有2个未知数,不是一元一次方程;
故选:A.
【点睛】
解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.
5.C
解析:C
【解析】
【分析】
分别表示出愿两位数和新两位数,进而得出答案.
【详解】
解:由题意可得,原数为:;
新数为:,
故原两位数与新两位数之差为:.
故选C.
【点睛】
本题考查列代数式,正确理解题意得出代数式是解题关键.
6.A
解析:A
【解析】
试题分析:根据四棱锥的侧面展开图得出答案.
试题解析:如图所示:这个几何体是四棱锥.
故选A.
考点:几何体的展开图.
7.B
解析:B
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:3x﹣9﹣3=0,
解得:x=4,
故选:B.
【点睛】
此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.
8.C
解析:C
【解析】
【分析】
由题意直接根据根据绝对值的性质,即可求出这个数.
【详解】
解:如果一个有理数的绝对值是6,那么这个数一定是或.
故选:C.
【点睛】
本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
9.B
解析:B
【解析】
【分析】
【详解】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
10.A
解析:A
【解析】
①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;
②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;
③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;
④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.
故本题正确答案为①.
二、填空题
11.【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,
解析:
【解析】
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.
【详解】
解:由题知:右上和右下两个数的和等于中间的数,
∴第4个正方形中间的数字m=14+15=29;
∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,
∴第n个正方形的中间数字:4n-2+4n-1=8n-3.
故答案为:29;8n-3
【点睛】
本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.
12.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
13.5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3
解析:5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3=8;
∵点D是AC的中点,
∴AD=8÷2=4;
∵点E是AB的中点,
∴AE=5÷2=2.5,
∴ED=AD﹣AE=4﹣2.5=1.5.
故答案为:1.5.
【点睛】
此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.
14.【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本
解析:
【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.
15.8+x=(30+8+x).
【解析】
【分析】
设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.
【详解】
解:设还要录取女生人,根据题意得:
解析:8+x=(30+8+x).
【解析】
【分析】
设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.
【详解】
解:设还要录取女生人,根据题意得:
.
故答案为:.
【点睛】
此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.
16.【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
解析:【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
17.45°
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α
解析:45°
【解析】
【分析】
根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.
【详解】
设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,
根据题意得,180°-α=3(90°-α),
解得α=45°.
故答案为:45°.
【点睛】
本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.
18.6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1
解析:6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1+3+3=7个基础图案,
第3个图案中有1+3+3+3=10个基础图案,
……
第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,
当n=2013时,1+3n=1+3×2013=6040,
故答案为:6040.
【点睛】
本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.
19.【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;
单
解析:
【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;
单项式的次数分别是1、2、3、4、5……,第个单项式的次数是;
第个单项式是;
故答案为.
【点睛】
此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.
20.6
【解析】
如图,∵AB=2cm,BC=2AB,
∴BC=4cm,
∴AC=AB+BC=6cm.
故答案为:6.
解析:6
【解析】
如图,∵AB=2cm,BC=2AB,
∴BC=4cm,
∴AC=AB+BC=6cm.
故答案为:6.
三、解答题
21.-4</p><x≤2,数轴表示见解析. .="" x="">-4,
所以不等式组的解集为:-4<x≤2,
在数轴上表示如下所示:
【点睛】
本题考查了解一元一次不等式组,熟练掌握不等式组的解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.
22.(1)x=9;(2)x=8.5
【解析】
【分析】
(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x的系数化为1即可;
(2)方程两边都乘以10得到,再去括号得,然后合并得到合并得,最后把x的系数化为1即可.
【详解】
解:(1),
,
,
;
(2),
,
,
,
.
23.;-72
【解析】
【分析】
由题意先利用整式加减运算法则对式子进行化简,再将,代入求解即可.
【详解】
解:
=
=;
将,代入得到
【点睛】
本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.
24.,3.
【解析】
【分析】
先去括号,再根据合并同类项法则合并出最简结果,把x、y的值代入求值即可.
【详解】
原式
将,代入得:原式
【点睛】
本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.
25.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.
【解析】
【分析】
(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x元,用x将水杯的售价表示出来,然后列出一元一次方程求解即可.
(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.
【详解】
(1)设一个暖瓶售价元,则一个水杯售价是元.
依题意得:,
解得:.
38-30=8(元).
因此,一个暖瓶的售价是30元,一个水杯的售价是8元.
(2)这个单位在甲商场购买更算.
理由:在甲商场购买所需费用为:(元);
在乙商场购买所需费用为:(元);
因为210.8<216,
所以这个单位在甲商场购买更算.
【点睛】
本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.
26.2
【解析】
【分析】
直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.
【详解】
解:原式
.
【点睛】
此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.
27.【解析】
【分析】
有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算.
【详解】
原式= -4×(-9) +16÷(-8) -│-20│
=36-2-20 = 14
【点睛】
本题考查了有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算,计算时注意-22=-4,(-2)3=-8.
28.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级班出发小时或2小时或4小时后,两队相距2千米
【解析】
【分析】
(1) 设后队追上前队需要x小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;
(2)由路程=速度×时间可求联络员走的路程;
(3)分三种情况讨论,列出方程求解即可.
【详解】
设后队追上前队需要x小时,
根据题意得:
,
答:后队追上前队需要2小时;
千米,
答:联络员走的路程是20千米;
设七年级班出发t小时后,两队相距2千米,
当七年级班没有出发时,,
当七年级班出发,但没有追上七年级班时,,
,
当七年级班追上七年级班后,,
,
答:七年级班出发小时或2小时或4小时后,两队相距2千米.
【点睛】
本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.
29.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.
【解析】
【分析】
(1)根据数轴上的点对应的数即可求解;
(2)根据数轴上原点的位置确定其它点对应的数即可求解;
(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.
【详解】
解:(1)∵点C为原点,BC=1,
∴B所对应的数为﹣1,
∵AB=2BC,
∴AB=2,
∴点A所对应的数为﹣3,
∴m=﹣3﹣1+0=﹣4;
故答案为:﹣3,﹣1,﹣4;
(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,
∴点A所对应的数为﹣4,点C所对应的数为2,
∴m=﹣4+2+0=﹣2;
(3)∵原点O到点C的距离为8,
∴点C所对应的数为±8,
∵OC=AB,
∴AB=8,
当点C对应的数为8,
∵AB=8,AB=2BC,
∴BC=4,
∴点B所对应的数为4,点A所对应的数为﹣4,
∴m=4﹣4+8=8;
当点C所对应的数为﹣8,
∵AB=8,AB=2BC,
∴BC=4,
∴点B所对应的数为﹣12,点A所对应的数为﹣20,
∴m=﹣20﹣12﹣8=﹣40.
【点睛】
本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.
30.(1),;(2)平分;(3)、.
【解析】
【分析】
(1)根据角平分线和直角的性质,即可得出∠COE,然后根据平角的性质即可得出∠BOE;
(2)根据角平分线的性质得出,然后根据余角的性质得出∠COE=∠BOE,即可得出平分;
(3)根据余角的性质,即可判定.
【详解】
(1)∵平分,,
∴,
∵.
∴,
;
(2)平分
∵平分,
∴
∵
∴∠DOC+∠COE=∠AOD+∠BOE=90°
∴∠COE=∠BOE
∴平分;
(3)由题意,得∠DOE=∠DOC+∠COE=90°
∠AOD+∠BOE=90°,∠AOD=∠DOC
∴与互余的角有:、
【点睛】
此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.</x≤2,数轴表示见解析.>
展开阅读全文