资源描述
2020-2021精选中考数学易错题专题复习一元二次方程组及答案
一、一元二次方程
1.某建材销售公司在2019年第一季度销售两种品牌的建材共126件,种品牌的建材售价为每件6000元,种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将种品牌的建材在上一个季度的基础上下调,种品牌的建材在上一个季度的基础上上涨;同时,与(1)问中最低销售额的销售量相比,种品牌的建材的销售量增加了,种品牌的建材的销售量减少了,结果2019年第二季度的销售额比(1)问中最低销售额增加,求的值.
【答案】(1)至多销售品牌的建材56件;(2)的值是30.
【解析】
【分析】
(1)设销售品牌的建材件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;
(2)根据题意列出方程求解即可.
【详解】
(1)设销售品牌的建材件.
根据题意,得,
解这个不等式,得,
答:至多销售品牌的建材56件.
(2)在(1)中销售额最低时,品牌的建材70件,
根据题意,得
,
令,整理这个方程,得,
解这个方程,得,
∴(舍去),,
即的值是30.
【点睛】
本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
2.已知关于x的方程①的两个实数根的倒数和等于3,且关于x的方程②有实数根,又k为正整数,求代数式的值.
【答案】0.
【解析】
【分析】
由于关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a的方程求出a,又由于关于x的方程(k-1)x2+3x-2a=0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k为正整数,利用判别式可以求出k,最后代入所求代数式计算即可求解.
【详解】
解:设方程①的两个实数根分别为x1、x2
则 ,
由条件,知=3,
即,且,
故a=-1,
则方程②为(k-1)x2+3x+2=0,
Ⅰ.当k-1=0时,k=1,x=,则.
Ⅱ.当k-1≠0时,=9-8(k-1)=17-6-8k≥0,则,
又k是正整数,且k≠1,则k=2,但使无意义.
综上,代数式的值为0
【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
3.已知关于的方程和,是否存在这样的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的值;若不存在,请说明理由?
【答案】存在,n=0.
【解析】
【分析】
在方程①中,由一元二次方程的根与系数的关系,用含n的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n,要注意n的值要使方程②的根是整数.
【详解】
若存在n满足题意.
设x1,x2是方程①的两个根,则x1+x2=2n,x1x2=,所以(x1-x2)2=4n2+3n+2,
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=-,但1-n=不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=-(舍),
综上所述,n=0.
4.已知关于x的二次函数的图象与x轴有2个交点.
(1)求k的取值范围;
(2)若图象与x轴交点的横坐标为,且它们的倒数之和是,求k的值.
【答案】(1)k<- ;(2)k=﹣1
【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b2-4ac的范围可求解出k的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k的值.
试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,
∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<- ;
(2)当y=0时,x2-(2k-1)x+k2+1=0.
则x1+x2=2k-1,x1•x2=k2+1,
∵=== ,
解得:k=-1或k= (舍去),
∴k=﹣1
5.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)
(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了m%,求出m的值.
【答案】(1)120;(2)20.
【解析】
试题分析:(1)本题介绍两种解法:
解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;
解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;
(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了m%”列方程解出即可.
试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;
解法二:7680÷80÷0.8=96÷0.8=120(元).
答:每个礼盒在花店的最高标价是120元;
(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+m%)+a[120×0.8(1﹣25%)﹣m](1+15m%)=120×0.8a(1﹣25%)×2(1+ m%),即72a(1+ m%)+a(72﹣ m)(1+15m%)=144a(1+ m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.
答:m的值是20.
点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.
6.解方程:
【答案】
【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.
试题解析:因式分解,得
开平方,得
,或
解得
7.将m看作已知量,分别写出当0<x<m和x>m时,与之间的函数关系式;
8.有一个人患了流感,经过两轮传染后共有36人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
【详解】
(1)设每轮传染中平均一个人传染了x个人,根据题意得:
x+1+(x+1)x=36,
解得:x=5或x=﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
9.已知关于x的一元二次方程(m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根.
【答案】(1)见解析;
(2) 即m的值为0,方程的另一个根为0.
【解析】
【分析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t,利用根与系数的关系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.
【详解】
(1)证明:
△=(m+2)2−4×1⋅m=m2+4,
∵无论m为何值时m2≥0,
∴m2+4≥4>0,
即△>0,
所以无论m为何值,方程总有两个不相等的实数根.
(2)设方程的另一个根为t,
根据题意得2+t= ,2t=m,
解得t=0,
所以m=0,
即m的值为0,方程的另一个根为0.
【点睛】
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.
10.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?
【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元
【解析】
【分析】
表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.
【详解】
设每天获得的利润为w元,
根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000.
∵a=﹣10<0,
∴当x=50时,w取最大值,最大值为4000.
答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.
【点睛】
本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.
11.阅读下面的例题,
范例:解方程x2﹣|x|﹣2=0,
解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1(不合题意,舍去).
(2)当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1(不合题意,舍去).
∴原方程的根是x1=2,x2=﹣2
请参照例题解方程x2﹣|x﹣10|﹣10=0.
【答案】x1=4,x2=﹣5.
【解析】
【分析】
分为两种情况:当x≥10时,原方程化为x2﹣x=0,当x<10时,原方程化为x2+x﹣20=0,分别求出方程的解即可.
【详解】
当x≥10时,原方程化为x2﹣x+10﹣10=0,解得x1=0(不合题意,舍去),x2=1(不合题意,舍去);
当x<10时,原方程化为x2+x﹣20=0,解得x3=4,x4=﹣5,
故原方程的根是x1=4,x2=﹣5.
【点睛】
本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.
12.关于x的一元二次方程x2﹣2x﹣(n﹣1)=0有两个不相等的实数根.
(1)求n的取值范围;
(2)若n为取值范围内的最小整数,求此方程的根.
【答案】(1)n>0;(2)x1=0,x2=2.
【解析】
【分析】
(1)根据方程有两个不相等的实数根可知 ,即可求出 的取值范围;
(2)根据题意得出 的值,将其代入方程,即可求得答案.
【详解】
(1)根据题意知,
解之得:;
(2)∵ 且为取值范围内的最小整数,
∴,
则方程为,
即,
解得.
【点睛】
本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程 的根与的关系(①当 时,方程有两个不相等的实数根;②当 时方程有两个相等的实数根;③当 时,方程无实数根)是解题关键.
13.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
14.已知关于x的方程x2﹣(k+3)x+3k=0.
(1)若该方程的一个根为1,求k的值;
(2)求证:不论k取何实数,该方程总有两个实数根.
【答案】(1)k=1;(2)证明见解析.
【解析】
【分析】
(1)把x=1代入方程,即可求得k的值;
(2)求出根的判别式是非负数即可.
【详解】
(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,
1﹣k﹣3+3k=0
解得k=1;
(2)证明:
△=(k+3)2﹣4•3k =(k﹣3)2≥0,
所以不论k取何实数,该方程总有两个实数根.
【点睛】
本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.
15.已知关于的方程有两个不相等的实数根,.
求的取值范围.
是否存在实数,使方程的两实数根互为相反数?
【答案】(1)且;(2)不存在,理由见解析
【解析】
【分析】
(1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围;
(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k的值.
【详解】
(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得:k﹣1≠0且△=﹣12k+13>0,解得:k<且k≠1;
(2)假设存在两根的值互为相反数,设为 x1,x2.
∵x1+x2=0,∴﹣=0,∴k=.
又∵k<且k≠1,∴k不存在.
【点睛】
本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.
展开阅读全文