1、一、解答题1如图1,已知,点A(1,a),AHx轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足(1)填空:直接写出A、B、C三点的坐标A(_)、B(_)、C(_);直接写出三角形AOH的面积_(2)如图1,若点D(m,n)在线段OA上,证明:4mn(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动若经过t秒,三角形AOP与三角形COQ的面积相等,试求t的值及点P的坐标2如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平
2、分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值3已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由4如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和
3、的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 5已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理
4、由6已知,ABDE,点C在AB上方,连接BC、CD(1)如图1,求证:BCDCDEABC;(2)如图2,过点C作CFBC交ED的延长线于点F,探究ABC和F之间的数量关系;(3)如图3,在(2)的条件下,CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分ABC,求BGDCGF的值7规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=_,(5,1)=_,(2, )=_(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4
5、n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)8阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:9对于有理数、,定义了一种新运算“”为:如:,(1)计算:_;_;(2)若是关于的一元一次方程,且方程的解为,求的值;(3)若,且,求的值10阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)(2)11据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志
6、上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=_;12先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依
7、次对应这26个自然数(见下表)QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S将密文转成成明文,如,即变为:,即D变为F(1)按上述方法将明文译为密文(2)若按上方法将明文译成的密文为,请找出它的明文13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时
8、间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系15在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.在运动过程中,求的面积与的面积之间
9、的数量关系;若,求的面积与的面积之比. 16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解,所以与存在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17在平面直角坐标系中,满足(1)直接写出、的值: ; ;(2)如图1,若点满足的面积等于6,求的值;
10、(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值18如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存在怎样的数量关系,并说明理由19历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示例如f(x)x23x5,把x某数时多项式的值用f(某数)来表示例
11、如x1时多项式x23x5的值记为f(1)(1)23(1)57.(1)已知g(x)2x23x1,分别求出g(1)和g(2);(2)已知h(x)ax32x2ax6,当h()a,求a的值;(3)已知f(x)2(a,b为常数),当k无论为何值,总有f(1)0,求a,b的值20阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了
12、奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费22每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买
13、10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案23在平面直角坐标系中,点、在坐标轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移
14、线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:24如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足当时,求的值25某治污公司决定购买10台污水处理设备现有甲、乙两种型号的设备可
15、供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案26某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算)如果仅去程乘出租车而回程时不乘坐此车
16、,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费)如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返问选择哪种计费方式更省钱?(写出过程)27阅读理解:例1解方程|x|2,因为在数轴上到原点的距离为2的点对应的数为2,所以方程|x|2的解为x2例2解不等式|x1|2,在数轴上找出|x1|
17、2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1或3,所以方程|x1|2的解为x1或x3,因此不等式|x1|2的解集为x1或x3参考阅读材料,解答下列问题:(1)方程|x2|3的解为 ;(2)解不等式:|x2|1(3)解不等式:|x4|+|x+2|8(4)对于任意数x,若不等式|x+2|+|x4|a恒成立,求a的取值范围28在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围29(发现问题)已知,求的值
18、方法一:先解方程组,得出,的值,再代入,求出的值方法二:将,求出的值(提出问题)怎样才能得到方法二呢?(分析问题)为了得到方法二,可以将,可得令等式左边,比较系数可得,求得(解决问题)(1)请你选择一种方法,求的值;(2)对于方程组利用方法二的思路,求的值;(迁移应用)(3)已知,求的范围30如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、.(1)若在轴上存在点,连接,使SABM =SABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=SPCD+SPOB的取值范围;(3)若在直线上运动,请直
19、接写出的数量关系.【参考答案】*试卷处理标记,请不要删除一、解答题1(1)1,4;3,0;2,4;2;(2)见解析;(3)t1.2时,P(0.6,0),t2时,P(1,0)【分析】(1)利用非负数的性质求出a,b的值,可得结论利用三角形面积公式求解即可(2)连接DH,根据ODH的面积+ADH的面积=OAH的面积,构建关系式,可得结论(3)分两种情形:当点P在线段OB上,当点P在BO的延长线上时,分别利用面积关系,构建方程,可得结论【详解】(1)解:,又0,(b3)20,a4,b3,A(1,4),B(3,0),B是由A平移得到的,A向右平移2个单位,向下平移4个单位得到B,点C是由点O向右平移2
20、个单位,向下平移4个单位得到的,C(2,4),故答案为:1,4;3,0;2,4AOH的面积142,故答案为:2(2)证明:如图,连接DHODH的面积+ADH的面积OAH的面积,1n4(1m)2,4mn(3)解:当点P在线段OB上,由三角形AOP与三角形COQ的面积相等得:OPyA=OQxC,(32t)42t,解得t1.2此时P(0.6,0)当点P在BO的延长线上时,由三角形AOP与三角形COQ的面积相等得:OPyA=OQxC,(2t3) 42t,解得t2,此时P(1,0),综上所述,t1.2时,P(0.6,0),t2时,P(1,0)【点睛】本题考查坐标与图形变化-平移,非负数的性质,三角形的面
21、积等知识,解题的关键是学会利用参数构建方程解决问题2(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平
22、分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键3(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线
23、交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,
24、FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键4(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运
25、算,解题的关键是准确作出平行线,找出角与角之间的数量关系5(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键6(1)证明见解析;(2);(3)【分析】(1)过点作,先
26、根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案【详解】证明:(1)如图,过点作,即,;(2)如图,过点作,即,;(3)如图,过点作,延长至点,平分,平分,由(2)可知,又,【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键7(1)3,0,-2 (2) (4
27、,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)33=27(3,27)=350=1(5,1)=12-2= (2,)=-2(2)设(4,5)=x,(4,6)=y则,=6(4,30)=x+y (4,5)+(4,6)=(4,30) 点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.8(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可【详解】解:(1)根据得:(2)设,则,即:(3)设,则,即:同理可求【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解
28、本题的关键9(1)5;(2)1;(3)16【分析】(1)根据题中定义代入即可得出;(2)根据,讨论3和 的两种大小关系,进行计算;(3)先判定A、B的大小关系,再进行求解【详解】(1)根据题意:,(2), 若,则,解得,若,则,解得(不符合题意),(3),得,【点睛】本题考查了一种新运算,读懂题意掌握新运算并能正确化简是解题的关键10(1)(2)【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)(2)原式【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.11(1)两;(2)2,3;
29、(3)24,-48【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论【详解】解:(1)由103=1000,1003=1000000,100032768100000,10100,是两位数;故答案为:两;(2)只有个位数是2的立方数是个位数是8,的个位上的数是2划去32768后面的三位数768得到32,因为33=27,43=64,273264,3040的十位上的数是3故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两
30、位数;只有个位数是4的立方数是个位数是4,的个位上的数是4划去13824后面的三位数824得到13,因为23=8,33=27,81327,2030=24;由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的立方数是个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,因为43=64,53=125,64110125,4050=-48;故答案为:24,-48【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数12(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明
31、文为F,Y,C【分析】(1)由图表找出N,E,T对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET转换成密文:即N,E,T密文为M,Q,P;(2)将密文D,W,N转换成明文:即密文D,W,N的明文为F,Y,C【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换13(1)(-2,0);(2)4秒;(0,)或(-3,)【分析】(1)根据BC=AE=3,OA=1,推出OE=2,可得结论(2)判断出PB=CD,即可得出结论;根据PEA的面积以及AE求出点
32、P到AE的距离,结合点P的路线可得坐标【详解】解:(1)C(-3,2),A(1,0),BC=3,OA=1,BC=AE=3,OE=AE-AO=2,E(-2,0);(2)点C的坐标为(-3,2)BC=3,CD=2,点P的横坐标与纵坐标互为相反数;点P在线段BC上,PB=CD=2,即t=(2+2)1=4;当t=4秒时,点P的横坐标与纵坐标互为相反数;PEA的面积为2,A(1,0),E(-2,0),AE=3,设点P到AE的距离为h,h=,即点P到AE的距离为,点P的坐标为(0,)或(-3,)【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解本题的关键是由线段和部分点的坐标,得出其它点的坐标1
33、4(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CD
34、OE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键15(1)55或3
35、5;(2);.【解析】【分析】(1)分两种情况:在RtFEC中,求出FEC=90-10=80,然后根据点在第二象限的角平分线上,得出POE=45,对顶角相等,即可得出CPO=180-80-45=55;由已知条件,得出CEO=45,又根据CEO=CPE+PCB,得出CPO;(2)首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,CFE=90FEC=90-10=80,又点在第二象限的
36、角平分线上,POE=45又FEC=PEO=80CPO=180-80-45=55延长CB,交直线l于点E,由已知得,点在第二象限的角平分线上,CEO=45CEO=CPE+PCBCPO=45-10=35.故答案为55或35.(2)如图,设长方形向上平移个单位长,得到长方形长方形,令交于E,则四边形是平行四边形,又由得知,.【点睛】此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题.16(1)A与B存在“雅含”关系,B是A的“子式”;(2);(3)存在,【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出解集,根据“雅含”关系的定义得出,解不等式即可;(3)首先解关于的方程组即
37、可求得的值,然后根据,且为整数即可得到一个关于的范围,从而求得的整数值【详解】解:(1)不等式A:x+21的解集为,A与B存在“雅含”关系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,与存在“雅含”关系,且是的“子式”,解得:,(3)存在;由解得:,即:,解得:,为整数,的值为,解不等式得:,解不等式得:,与存在“雅含”关系,且是的“子式”,不等式的解集为:,且,解得:,【点睛】本题考查了不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解17(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点
38、作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可【详解】解:(1),故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,解得,又点满足的面积等于6,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,解得,解得,由题知,当秒时,解得或2【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键18(1)(2,6);(2)(,0)或(9,0);(3)OCD+DBA=BDC或OCD-DBA=BDC【分析】(1)由点的坐
39、标的特点,确定出FC=2,OF=6,得出C(2,6);(2)分点D在线段OA和在OA延长线两种情况进行计算;(3)分点D在线段OA上时,OCD+DBA=BDC和在OA延长线OCD-DBA=BDC两种情况进行计算【详解】解:(1)如图,过点C作CFy轴,垂足为F,过B作BEx轴,垂足为E,A(6,0),B(8,6),FC=AE=8-6=2,OF=BE=6,C(2,6);(2)设D(x,0),当ODC的面积是ABD的面积的3倍时,若点D在线段OA上,OD=3AD,6x=36(6-x),x=,D(,0);若点D在线段OA延长线上,OD=3AD,6x=36(x-6),x=9,D(9,0);(3)如图,过点D作DEOC,由平移的性质知OCABOCABDEOCD=CDE,EDB=DBA若点D在线段OA上,BDC=CDE+EDB=OCD+DBA,即OCD+DBA=BDC;若点D在线段OA延长线上,BDC=CDE-EDB=OCD-DBA,即OCD-DBA=BDC【点睛】此题是几何变换综合题,主要考查了点三角形面积的计算方法,平移的性质,平行线的性质和判定,解本题的关键是分点D在线段OA上,和OA延长线上两种情况19(1)g(1)2g(2)1(2)a4(3)a,b4.【解析】【分析】(1)将x=-1和x=-2分别代入可得出答案