收藏 分销(赏)

人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc

上传人:快乐****生活 文档编号:4880379 上传时间:2024-10-17 格式:DOC 页数:46 大小:2.70MB
下载 相关 举报
人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc_第1页
第1页 / 共46页
人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc_第2页
第2页 / 共46页
人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc_第3页
第3页 / 共46页
人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc_第4页
第4页 / 共46页
人教版七年级数学下册期末压轴题试题(带答案)(一)培优试题.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

1、一、解答题1如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)( ),( )(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数: (注: 三角形三个内角的和为) (3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.2如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分D

2、AP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)3已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数4已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数5问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明

3、的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数6(1)如图,若B+D=E,则直线AB与CD有什么位置关

4、系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 7对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a0,且a1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN当a0,且a1,M0,N0时,loga(MN)=logaM+logaN(I)解方程:logx4=2;()log28= ()计算:(lg2)2+lg21g5+1g52018= (直接写答案)8对于实数a,我们规定:用符号表示不大于的

5、最大整数,称为a的根整数,例如:,=3(1)仿照以上方法计算:=_;=_(2)若,写出满足题意的x的整数值_如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次=1,这时候结果为1(3)对100连续求根整数,_次之后结果为1(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是_9阅读材料,即,的整数部分为1,的小数部分为解决问题(1)填空:的小数部分是_;(2)已知是的整数部分,是的小数部分,求代数式的平方根为_10若一个四位数t的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称

6、这个新的四位数为“中介数”;记一个“前介数”t与它的“中介数”的差为P(t)例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P(5536)55366553-1017(1)P(2215),P(6655)(2)求证:任意一个“前介数”t,P(t)一定能被9整除(3)若一个千位数字为2的“前介数”t能被6整除,它的“中介数”能被2整除,请求出满足条件的P(t)的最大值11阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,

7、c数位相同,若bacb,我们称这个多位数为等差数例如:357分成了三个数3,5,7,并且满足:5375;413223分成三个数41,32,23,并且满足:32412332;所以:357和413223都是等差数(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T12观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”(1)数对中是“白马有理数对”的是_;(2)若是“白马有理数对”,求的值;(3)若是

8、“白马有理数对”,则是“白马有理数对”吗?请说明理由(4)请再写出一对符合条件的“白马有理数对”_(注意:不能与题目中已有的“白马有理数对”重复)13已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值 14已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,

9、连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数15如图,在平面直角坐标系中,,CD/x轴,CD=AB(1)求点D的坐标:(2)四边形OCDB的面积四边形OCDB;(3)在y轴上是否存在点P,使PAB=四边形OCDB;若存在,求出点P的坐标,若不存在,请说明理由.16某超市投入31500元购进A、B两种饮料共800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售

10、价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?17在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来第一组:、;第二组:、(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合)当点在线段上运动时,连接、,补全图形,用等式表示、之间的数量关系,并证明当与面积相等时,求点的坐标18在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(

11、1,n)(1)m=_,n=_(2)点P的坐标是(c,0)设ABP=,请写出BPD和PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)19先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数,满足,求和的值本题常规思路是将两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由2可得,这

12、样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,定义新运算:,其中,是常数,等式右边是通常的加法和乘法运算已知,那么_20(1)阅读下列材料并填空:对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解 ,用数表可表示为用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= (2)仿照(1)中数表的

13、书写格式写出解方程组的过程21每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案22数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点

14、N的“追赶点”如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=_(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n(3)若AM=BN,MN=BM,求m和n值23用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横

15、式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完则的值可能是( )A2019 B2020 C2021 D2022(3)给长方体容器加盖可以加工成铁盒先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?24如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合)将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E请

16、回答下列问题:(1)求A、B两点的坐标;(2)设三角形ABC面积为,若47,求m的取值范围;(3)设,请给出,满足的数量关系式,并说明理由25某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子(1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作

17、两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?26对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标

18、(若有多点并列最远,全部写出)27若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值28在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发

19、生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围29如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动(1)点的坐标为_;当点移动5秒时,点的坐标为_;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由30学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和

20、60块橡皮,则可按批发价购买,共支付40.5元已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】*试卷处理标记,请不要删除一、解答题1(1)A(-2,0)、B(0,3);(2)APD=90;(3)N的大小不变,N=45【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DMx轴,结合题意可设ADP=OAP=x,EAF=CAF=OAP=y,根据平角的定义可知OAD=90-2y,

21、由平行线的性质可得OAD+ADM=180,即90-2y+2x+90=180,进而可得出x=y,再结合图形即可得出APD的度数;(3)N的大小不变,N=45,如图,过D作DEBC,过N作NFBC,根据平行线的性质可知BMD+OAD=ADM=90,然后根据角平分线的定义和平行线的性质,可得ANM=BMD+OAD,据此即可得到结论.【详解】(1)由,可得和,解得 A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DMx轴根据题意,设ADP=OAP=x,EAF=CAF=OAP=y,CAD=90,CAE+OAD=90,2y+OAD=90,OAD=90-2y,DMx轴,OAD+ADM=180,9

22、0-2y+2x+90=180,x=y,APD=180-(PAD+ADP)=180-(y+90-2y+x)=180-90=90(3)N的大小不变,N=45理由:如图,过D作DEBC,过N作NFBC.BCx轴,DEBCx轴,NFBCx轴,EDM=BMD,EDA=OAD,DMAD,ADM=90,BMD+OAD=EDM+EDA=ADM=90,MN平分BMD,AN平分DAO,BMN=BMD,OAN=OAD,ANM=BMN+OAN=BMD+OAD=90=45.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系也考查了三角形内角和定理和三角形外角性质.2(1)11

23、0;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知),

24、 PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP)

25、, =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线3(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【

26、详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=ABD+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性

27、质、角平分线的性质是解答本题的关键4(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A

28、+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用5(1)APC=+,理由见解析;(2

29、)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动

30、时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键6(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+

31、F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,B+FED=BED B+D=E(已知),FED=D CD

32、/EF(内错角相等,两直线平行)AB/CD (2)过点E作EMAB,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,E1+E2+En=B+F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EFAB,GHAB,EFGH,EMN+MNG=180,1+2

33、+MNG =1802,依次类推:1+2+n-1+n=(n-1)180故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形7(I) x=2;() 3; () -2017.【分析】(I)根据对数的定义,得出x2=4,求解即可;()根据对数的定义求解即;()根据loga(MN)=logaM+logaN求解即可【详解】(I)解:logx4=2,x2=4,x=2或x=-2(舍去)()解:8=23,log28=3,故答案为3; ()解:(lg2)2+lg21g5+1g52018= lg2( lg2+1g5) +1g52

34、018= lg2 +1g52018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义8(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:(1)22=4, 62=36,52=25,56,=2=2,=5,故答案为2,5;(2)

35、12=1,22=4,且1,x=1,2,3,故答案为1,2,3;(3)第一次:=10,第二次:=3,第三次:=1,故答案为3;(4)最大的正整数是255,理由是:=15,=3,=1,对255只需进行3次操作后变为1,=16,=4,=2,=1,对256只需进行4次操作后变为1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力9(1);(2)3【分析】(1)由于479,可求的整数部分,进一步得出的小数部分; (2)先求出的整数部分和小数部分,再代入代数式进行计算即可【

36、详解】解:(1)479,即,的整数部分为2,的小数部分为;(2)是的整数部分,是的小数部分,91016,即,的整数部分为3, 的小数部分为,即有,9的平方根为3的平方根为3【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算10(1)-3006,990;(2)见解析;(3)P(t)的最大值是P(2262)=36【分析】(1)根据“前介数”t与它的“中介数”的差为P(t)的定义求解即可;(2)设“前介数”为且a、b、c均不为0的整数,即1a、b、c,根据定义得到P(t)=,则P(t)一定能被9整除;(3)设“前介数”为,根据题意得到能被3整除,且b只能取2,4,6

37、,8中的其中一个数;对应的“中介数”是,得到a只能取2,4,6,8中的其中一个数,计算P(t),推出要求P(t)的最大值,即要尽量的大,要尽量的小,再分类讨论即可求解【详解】(1)解:2215是“前介数”,其对应的“中介数”是5221,P(2215)=2215-5221=-3006;6655是“前介数”,其对应的“中介数”是5665,P(6655)=6655-5665=990;故答案为:-3006,990;(2)证明:设“前介数”为且a、b、c均为不为0的整数,即1a、b、c,又对应的“中介数”是,P(t)=,a、b、c均不为0的整数,为整数,P(t)一定能被9整除;(3)证明:设“前介数”为

38、且即1a、b,a、b均为不为0的整数,能被6整除,能被2整除,也能被3整除,为偶数,且能被3整除,又1,b只能取2,4,6,8中的其中一个数,又对应的“中介数”是,且该“中介数”能被2整除,为偶数,又1,a只能取2,4,6,8中的其中一个数,P(t)=,要求P(t)的最大值,即要尽量的大,要尽量的小,的最大值为8,的最小值为2,但此时,且14不能被3整除,不符合题意,舍去;的最大值为6,的最小值仍为2,但此时,能被3整除,且P(t)=2262-2226=36;的最大值仍为8,的最小值为4,但此时,且16不能被3整除,不符合题意,舍去;其他情况,减少,增大,则P(t)减少,满足条件的P(t)的最

39、大值是P(2262)=36【点睛】本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键本题中运用到的分类讨论思想是重要一种数学解题思想方法11(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,根据等差数的定义可知,进而得出即可(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解【详解】解:(1) ,148不是等差

40、数, ,514335是等差数;(2)设这个三位数是M, , , ,这个等差数是3的倍数;(3)由(2)知 ,T是24的倍数, 是8的倍数,2c是偶数,只有当35a也是偶数时才有可能是8的倍数,或4或6或8,当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意;当时,此时若,则,若,则,(144、152是8的倍数),当时,此时若,则,若,则,(216、244是8的倍数),当时,此时若,则,若,则,若,则,(280,288,296是8的倍数),若a是偶数,则c也是偶数时b才有意义,和是c是奇数均不符合题意,当时, ,当时,当时,当时,当时,综上,T为432或456或840或864或888【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键12(1);(2)2;(3)不是;(4)(6,)【分析】(1)根据“白马有理数对”的定义,把数对分别代入计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题【详解】(1)-2+1=-1,而-21-1=-3,-2+1-3,(-2,1)不是“白马有理数对”,5+=,5-1=,5

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服