1、一、解答题1如图1,在平面直角坐标系中,且满足,过作轴于(1)求的面积(2)若过作交轴于,且分别平分,如图2,求的度数(3)在轴上存在点使得和的面积相等,请直接写出点坐标2如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值3如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值
2、;若变化,求其变化范围4如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数5如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数6已知,(1)如图1,求
3、证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数7阅读下列材料:小明为了计算的值,采用以下方法:设 则 -得,请仿照小明的方法解决以下问题:(1)_;(2)_;(3)求的和(,是正整数,请写出计算过程).8观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”(1)数对中是“白马有理数对”的是_;(2)若是“白马有理数对”,求的值;(3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由(4)请再写出一对符合条件的“白马有理数对”_(注意:不能与题目中已
4、有的“白马有理数对”重复)9阅读型综合题对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对(1)若,则 , ;(2)已知,若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由10对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),
5、例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:_,并说明你猜想的正确性11阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根12三个自然数x、y、z组成一个有序数组,如果满足,那么我
6、们称数组为“蹦蹦数组”例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”(1)分别判断数组和是否为“蹦蹦数组”;(2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且是否存在一个整数b,使得数组为“蹦蹦数组”若存在,求出b的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数13如图,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积
7、等于的面积,请直接写出点的坐标_(用含的式子表示)14已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系15对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P(x+t,yt)称为将点P进行“t型平移”,点P称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”例如,将点P(x,y)平移到P(x+1,y1)称为将点P进行“l型平移”,将点P(x,y)平移到P(x1,y+1)称为
8、将点P进行“l型平移”已知点A (2,1)和点B (4,1)(1)将点A (2,1)进行“l型平移”后的对应点A的坐标为 (2)将线段AB进行“l型平移”后得到线段AB,点P1(1.5,2),P2(2,3),P3(3,0)中,在线段AB上的点是 若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是 (3)已知点C (6,1),D (8,1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B,当t的取值范围是 时,BM的最小值保持不变16某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 =
9、销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由17如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0)正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t4(1
10、)点F的坐标为 ;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动连接AP,AE求t为何值时,AP所在直线垂直于x轴;求t为何值时,SSAPE18在平面直角坐标系中,已知点,连接,将向下平移6个单位得线段,其中点的对应点为点(1)填空:点的坐标为_,线段平移到扫过的面积为_(2)若点是轴上的动点,连接如图,当点在轴正半轴时,线段与线段相交于点,用等式表示三角形的面积与三角形的面积之间的关系,并说明理由当将四边形的面积分成13两部分时,求点的坐标19五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2
11、台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20题目:满足方程组的x与y的值的和是2,求k的值按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由xy2,构造关于k的方程求解,从而得出k值(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,
12、对于方程组中每个方程变形得到“xy”这个整体,或者对方程组的两个方程进行加减变形得到“xy”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程(2)小勇同学的解答是:观察方程,令3xk,5y1解得y,3xy2,xk3把x,y代入方程得k所以k的值为或请诊断分析并评价“小勇同学的解答”21我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人
13、准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能22每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购
14、买方案23学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由24如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足将点B向右平移24个单位长度得到点C点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F设运动的时间为t秒(
15、0t10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同)(1)求点A和点C的坐标;(2)若S四边形BOEDS四边形ACDE,求t的取值范围;(3)求证:在D,E运动的过程中,SOEFSDCF总成立25若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”例如:关于x的代数式,当-1x 1时,代数式在x=1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1x1这个范围内,则称代数式是-1x1的“湘一代数式”(1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不
16、是”)的“湘一代数式”(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值(3)若关于的代数式是的“湘一代数式”,求m的取值范围26如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动若两点同时出发,其中一点到达终点时,运动停止()直接写出三个点的坐标;()设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;()当三角形的面积的范围小于16时,求运动的时间的范围27在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其
17、变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围28中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是
18、近两天的销售情况销售日期销售数量(盏)销售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?30如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得ABC和OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过B作BDAC交y轴于D,且AE,DE分别平分CAB,ODB,如图2,图3, 求:CABODB的度数; 求:AED的度数.【参考答案】*试卷处理标记
19、,请不要删除一、解答题1(1)4;(2);(2)或【分析】(1)根据非负数的性质易得,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,所以;然后把 代入计算即可;(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出【详解】解:(1),的面积;(2)解:轴,又,过作,如图,分别平分,即:,;(3)或解:当在轴正半轴上时,如图,设,过作轴,轴,轴,解得, 当在轴负半轴上时,如图,解得,综上所述:或【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等也考查了非负数的性质、坐标与图形性质以及三角形面积公式
20、构造矩形求三角形面积是解题关键2(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO
21、+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键3(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,
22、根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键4(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的
23、性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MC
24、A180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键5(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN
25、,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性
26、质,解题的关键是根据平行找出角度之间的关系6(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键7(1);(2);(3)【分析】(
27、1)设式子等于s,将方程两边都乘以2后进行计算即可;(2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案;(3)设式子等于s,将方程两边都乘以a后进行计算即可.【详解】(1)设s=,2s=,-得:s=,故答案为:; (2)设s=,3s=,-得:2s=,, 故答案为: ;(3)设s=,as=,-得:(a-1)s=,s=.【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.8(1);(2)2;(3)不是;(4)(6,)【分析】(1)根据“白马有理数对”的定义,把数对分别代入计算即可判断;(2)根据“白马有理数对”的定义,构
28、建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题【详解】(1)-2+1=-1,而-21-1=-3,-2+1-3,(-2,1)不是“白马有理数对”,5+=,5-1=,5+=5-1,是“白马有理数对”,故答案为:;(2)若是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,-mn+1 mn-1(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,x=,(6,)是“白马有理数对”,故答
29、案为:(6,)【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键9(1)5,3;(2)有正格数对,正格数对为【分析】(1)根据定义,直接代入求解即可;(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可【详解】解:(1)5,3故答案为:5,3;(2)有正格数对将代入,得出,解得,则,为正整数且为整数,正格数对为:【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键10(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;
30、(3)根据(2)中的结论,猜想:【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同11(1) 4,-4;(2)1;(2) 12【分析】(1)先估算出的范围,即可得出答案;(2)先
31、估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可【详解】解:(1)45,的整数部分是4,小数部分是-4,故答案为4,-4;(2)23,a=-2,34,b=3,a+b-=-2+3-=1;(3)100110121,1011,110100+111,100+=x+y,其中x是整数,且0y1,x=110,y=100+-110=-10,x+24-y=110+24-+10=144,x+24-y的平方根是12【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键12(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“
32、蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147【分析】(1)由“蹦蹦数组”的定义进行验证即可;(2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解;(3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数【详解】解:(1)数组(437,307,177)中,437-307=130,307-177=130,437-307=307-177,故(437,307,177)是“蹦蹦数组”;数组(601,473,346)中,601-473=128,473-346=127,601-473473-346,故(601,473,346)不是“蹦
33、蹦数组”;(2)设s为,t为,则,m、n为整数,则t为258,s为532,而,则b为532-137=395,验算:532-395=395-258=137,故数组为(532,395,258);(3)根据题意,设这个数为,则,而和都是0到9的正整数,讨论:p12345q13579111123135147159而是7的倍数的三位数只有147,且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,故这个三位数是147【点睛】本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解13(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,
34、需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时【详解】解:(1)()作如下图形,进行分类讨论:当点在轴正半轴上时,;当点在轴负半轴上时,;当点在轴负半轴上时,;因此符合条件的点坐标有3个,分别是(3),即与点到的距离相等,由可推出,位于轴负半轴上时,;位于轴正半轴上时,综上:点的坐标为或【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解14(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD
35、,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2
36、中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF
37、),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质15(1)(3,0);(2)P1;或;(3)【分析】(1)根据“l型平移”的定义解决问题即可(2)画出线段A1B1即可判断根据定义求出t 最大值,最小值即可判断(3)如图2中,观察图象可知,当B在线段BB上时,BM的最小值保持不变,最小值为【详解】(1)将点A (2,1)进行“l型平移”后的对应点A的坐标为(3,0),故答案为:(3,0);(2)如图1中,观察图象可知,将线段AB进行“l型平移”后得到线段AB,点P1(1.5,2),P2(2,3)
38、,P3(3,0)中,在线段AB上的点是P1,故答案为:P1;若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是4t2或t=1故答案为:4t2或t=1(3)如图2中,观察图象可知,当B在线段BB上时,BM的最小值保持不变,最小值为,此时1t3故答案为:1t3【点睛】本题属于几何变换综合题,考查了平移变换,“t型平移”的定义等知识,解题的关键理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题,属于中考创新题型16(1)A、B两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标
39、;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A型电风扇a台的一个取值范围,从而得出a的最大值;(3)将B型电风扇用(30-a)表示出来,列写A、B两型电风扇利润为1400的等式方程,可求得a的值,最后在判断求解的值是否满足(2)中a的取值范围即可【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元, 依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元 (2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台依题意得:200a+170(30
40、-a)5400,解得:a10答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元; (3)依题意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,a10,在(2)的条件下超市不能实现利润1400元的目标【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解17(1)(3,4);(2)t=时,AP所在直线垂直于x轴;当t为或时,SSAPE【分析】(1)根据直角坐标系得出点F的坐标即可;(2)根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;分和两种情况,利用面积公式
41、列出方程即可求解【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)要使AP所在直线垂直于x轴如图1,只需要PxAx,则 t+33t,解得:,所以即时,AP所在直线垂直于x轴;由题意知,OH7,所以当时,点D与点H重合,所以要分以下两种情况讨论:情况一:当时,GD3t3,PFt,PE4t,SSAPE,BCGD,即:2(3t3),解得:;情况二:当时,如图2,HD3t7,PFt,PE4t,SSAPE,BCCH,即:22(3t7),解得:,综上所述,当t为或时,SSAPE【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键18(1);24;(2);见解析;或【分析】(1)由平移的性质得出点C坐标,AC=6,再求出AB,即可得出结论;(