资源描述
人教版中学七年级下册数学期末复习题(附答案)
一、选择题
1.如图,下列说法正确的是( )
A.与是同位角 B.与是内错角
C.与是同旁内角 D.与是同位角
2.在以下现象中,属于平移的是( )
①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.
A.①② B.②④ C.②③ D.③④
3.如果在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在以下三个命题中,正确的命题有( )
①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补
A.② B.①② C.②③ D.①②③
5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( )
A. B. C. D.
6.下列运算正确的是( )
A.=﹣6 B. C.=±2 D.2×3=5
7.如图,,,若,则的度数是( )
A.40° B.60° C.140° D.160°
8.如图,长方形的各边分别平行于轴、轴,物体甲和物体乙由点同时出发,沿长方形的边做环绕运动,物体甲按逆时针方向以每秒1个单位长度的速度匀速运动,物体乙按顺时针方向以每秒2个单位长度的速度匀速运动则两个物体运动后的第2021次相遇地点的坐标是( )
A. B. C. D.
九、填空题
9.如果,的平方根是,则__________.
十、填空题
10.点关于y轴对称的点的坐标是______.
十一、填空题
11.如图中,,,AD、AF分别是的角平分线和高,________.
十二、填空题
12.如图,,平分,交于,若,则的度数是______°.
十三、填空题
13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________.
十四、填空题
14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________.
十五、填空题
15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.
十七、解答题
17.计算(每小题4分)
(1)
(2).
(3).
(4)+|﹣2 | + ( -1 )2017
十八、解答题
18.求下列各式中的x.
(1)x2-81=0
(2)(x﹣1)3=8
十九、解答题
19.如图,三角形中,点,分别是,上的点,且,.
(1)求证:;(完成以下填空)
证明:(已知)
(______________),
又(已知)
(等量代换),
(_______________).
(2)与的平分线交于点,交于点,
①若,,则_______;
②已知,求.(用含的式子表示)
二十、解答题
20.在平面直角坐标系中有三个点、B(-5,1)、,是的边上任意一点,经平移后得到,点的对应点为,
(1)点到轴的距离是 个单位长度;
(2)画出和;
(3)求的面积.
二十一、解答题
21.已知:是的整数部分,是的小数部分.
求:
(1),值
(2)的平方根.
二十二、解答题
22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).
(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;
(2)迁移应用:
请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.
①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.
②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小.
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.
(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ;
(2)射线AF为∠CAD的角平分线.
① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;
② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 .
二十五、解答题
25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.
【详解】
解:∵∠3与∠1是同位角,∠C与∠1是内错角,∠2与∠3是邻补角,∠B与∠3是同旁内角,
∴B选项正确,
故选:B.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
2.B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
解析:B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
①在荡秋千的小朋友的运动,不是平移;
②坐观光电梯上升的过程,是平移;
③钟面上秒针的运动,不是平移;
④生产过程中传送带上的电视机的移动过程.是平移;
故选:B.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.
3.B
【分析】
根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴a+b<0,ab>0,
∴点Q(a+b,ab)在第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.
【详解】
解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误
综上:正确的命题是②.
故选A.
【点睛】
此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.
5.A
【分析】
过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.
【详解】
解:过G作GMAB,
∴∠2=∠5,
∵ABCD,
∴MGCD,
∴∠6=∠4,
∴∠FGC=∠5+∠6=∠2+∠4,
∵FG、CG分别为∠EFG,∠ECD的角平分线,
∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,
∵∠E+2∠G=210°,
∴∠E+∠1+∠2+∠ECD=210°,
∵ABCD,
∴∠ENB=∠ECD,
∴∠E+∠1+∠2+∠ENB=210°,
∵∠1=∠E+∠ENB,
∴∠1+∠1+∠2=210°,
∴3∠1=210°,
∴∠1=70°,
∴∠EFG=2×70°=140°.
故选:A.
【点睛】
此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.
6.B
【分析】
分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.
【详解】
A、,此选项计算错误;
B、,此选项计算正确;
C、,此选项计算错误;
D、2×3=6,此选项计算错误;
故选:B.
【点睛】
本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.
7.A
【分析】
根据平行线的性质求出∠C,再根据平行线的性质求出∠B即可.
【详解】
解:∵BC∥DE,∠CDE=140°,
∴∠C=180°-140°=40°,
∵AB∥CD,
∴∠B=40°,
故选:A.
【点睛】
本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.
8.A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体
解析:A
【分析】
根据两个物体运动速度和矩形周长,得到两个物体的相遇时间间隔,进而得到两个点相遇的位置规律.
【详解】
解:由已知,矩形周长为12,
∵甲、乙速度分别为1单位/秒,2单位/秒
则两个物体每次相遇时间间隔为秒,
则两个物体相遇点依次为(-1,1)、(-1,-1)、(2,0),
∵2021=3×673+2,
∴第2021次两个物体相遇位置为(-1,-1),
故选:A.
【点睛】
本题为平面直角坐标系内的动点坐标规律探究题,解答关键是找到两个物体相遇的位置的变化规律.
九、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
十、填空题
10.【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标
解析:
【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键.
十一、填空题
11.【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵A
解析:
【分析】
根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答.
【详解】
∵AF是的高,∴,
在中,,
∴.
又∵在中,,,
∴,
又∵AD平分,
∴,
∴
.
故答案为:.
【点睛】
本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.
十二、填空题
12.25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为
解析:25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为:25.
【点睛】
本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
十三、填空题
13.cm²
【分析】
根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解.
【详解】
解:根据翻折变换的性质可知AC垂直平分BB1,
∵B1D∥AC,
∴
解析:cm²
【分析】
根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解.
【详解】
解:根据翻折变换的性质可知AC垂直平分BB1,
∵B1D∥AC,
∴AC为三角形ADB中位线,
∴BC=CD=BD=3cm,
在Rt△BCE中,∠CBE=45°,BC=3cm,
∴CE2+BE2=BC2,
解得BE=CE=cm.
∴EB1=BE=,
∵CE为△BDB1中位线,
∴DB1=2CE=3cm,
△ADB1的高与EB1相等,
∴S△ADB1=×DB1×EB1=××3=cm²,
故答案为:cm².
【点睛】
本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案.
十四、填空题
14.101
【分析】
根据“”的定义进行运算即可求解.
【详解】
解:=== =101.
故答案为:101.
【点睛】
本题考查了新定义运算,理解新定义的法则是解题关键.
解析:101
【分析】
根据“”的定义进行运算即可求解.
【详解】
解:=== =101.
故答案为:101.
【点睛】
本题考查了新定义运算,理解新定义的法则是解题关键.
十五、填空题
15.(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a
解析:(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a+2-3a=12,
解得a=-2,
∴2a=-4,2-3a=8,
∴点P的坐标为(-4,8).
故答案为:(-4,8).
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,
以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,
故第42秒时质点到达的位置为(6,6),
故答案为:(6,6).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.
十七、解答题
17.(1)0;(2);(3)1;(4)3.
【分析】
(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;
(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;
(3)先算绝对值、立方根
解析:(1)0;(2);(3)1;(4)3.
【分析】
(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;
(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;
(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;
(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.
【详解】
解:(1)原式=-3+4-3
=-2
(2)原式=
=
(3)原式=2+(-2)+1
=1
(4)原式=2+2-1
=3
【点睛】
本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.
十八、解答题
18.(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(
解析:(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(2)方程整理得:(x-1)3=8,
开立方得:x-1=2,
解得:x=3.
【点睛】
本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.
十九、解答题
19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可
解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出;
②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出.
【详解】
解:证明(1)证;
证明:(已知),
(两直线平行,同位角相等),
又(已知)
(等量代换),
(同位角相等,两直线平行),
故答案是:两直线平行,同位角相等;同位角相等,两直线平行.
(2)①与的平分线交于点,交于点,
且,,
,
,
由(1)知,
,
在中,
,
,
,
故答案是:;
②,
,
由(1)知,
,
,
在中,
,
故答案是:.
【点睛】
本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解.
二十、解答题
20.(1)2;(2)见解析;(3)2.5
【分析】
(1)根据A点的纵坐标即可求解;
(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B
解析:(1)2;(2)见解析;(3)2.5
【分析】
(1)根据A点的纵坐标即可求解;
(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连接即可;
(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.
【详解】
(1)∵
∴点到轴的距离是2个单位长度
故答案为:2;
(2)如图,和为所求作
(3)S=
=6-1-1-1.5
=2.5
【点睛】
本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
二十一、解答题
21.(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题
解析:(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
二十二、解答题
22.(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②
解析:(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.
【详解】
解:设正方形边长为a,
∵a2=2,
∴a=,
故答案为:,;
(2)解:①裁剪后拼得的大正方形如图所示:
②设拼成的大正方形的边长为b,
∴b2=5,
∴b=±,
在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,
∴比较大小:.
【点睛】
本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,
解析:(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.
【详解】
.
解:(1)设在上有一点N在点A的右侧,如图所示:
∵
∴,
∴
∴
(2)①.
证明:设,.
∴.
∵为的角平分线,
∴.
∵,
∴.
∴.
∴.
②当点在点右侧时,如图:
由①得:
又∵
∴
∵
∴
当点在点左侧,在右侧时,如图:
∵为的角平分线
∴
∵
∴,
∵
∴
∴
∵
∴
又∵
∴
∴
当点和在点左侧时,设在上有一点在点的右侧如图:
此时仍有,
∴
∴
综合所述:或
【点睛】
本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.
二十五、解答题
25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文