资源描述
南宁市七年级下学期数学期末压轴难题试卷及答案-百度文库
一、选择题
1.如图,与是( )
A.同位角 B.内错角 C.同旁内角 D.对顶角
2.下列图形中,可以由其中一个图形通过平移得到的是( )
A. B. C. D.
3.如图,小手盖住的点的坐标可能为( )
A. B. C. D.
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB//DC,则∠CAE的度数为( )
A.25° B.20° C.15° D.10°
6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )
A.﹣1 B.1 C.﹣2 D.2
7.如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( )
A. B. C. D.
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2021的坐标为( )
A.(-3,3) B.(-2,2) C.(3,-1) D.(2,4)
二、填空题
9.若=x,则x的值为______.
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
11.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ADB=__度.
12.如图,直线,相交于点E,.若,则等于_____.
13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______.
14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.
15.第二象限内的点满足=,=,则点的坐标是___.
16.如图,在平面直角坐标系中,动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…按这样的运动规律,经过第2021次运动后,动点的坐标是__________.
三、解答题
17.计算:
(1)
(2)
18.求下列各式中的的值:
(1);
(2).
19.如图,三角形中,点,分别是,上的点,且,.
(1)求证:;(完成以下填空)
证明:(已知)
(______________),
又(已知)
(等量代换),
(_______________).
(2)与的平分线交于点,交于点,
①若,,则_______;
②已知,求.(用含的式子表示)
20.已知点A(-2,3),B(4,3),C(-1,-3).
(1)在平面直角坐标系中标出点A,B,C的位置;
(2)求线段AB的长;
(3)求点C到x轴的距离,点C到AB的距离;
(4)求三角形ABC的面积;
(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.
21.已知的整数部分是a,小数部分是b,求a+ 的值。
的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2,
a+,
请根据以上解题提示,解答下题:
已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值.
二十二、解答题
22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
二十三、解答题
23.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.
(1)如图1,若点E在线段AC上,求证:B+D=BED;
(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;
(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示).
24.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
26.如图,平分,平分,
请判断与的位置关系并说明理由;
如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.
如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.
【详解】
解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,
故选:A.
【点睛】
本题主要考查了同位角的定义,是需要识记的内容,比较简单.
2.C
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;
故选:C.
【点睛】
本题考查的
解析:C
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;
故选:C.
【点睛】
本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.
3.C
【分析】
根据平面直角坐标系的象限内点的特点判断即可;
【详解】
∵盖住的点在第三象限,
∴符合条件;
故答案选C.
【点睛】
本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.C
【分析】
利用平行线的性质和给出的已知数据即可求出的度数.
【详解】
解:,,
,
,,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质,解题的关键是熟记平行线的性质.
6.A
【分析】
根据a,b的范围即可求出a−b的立方根.
【详解】
解:根据题意得:a≤,b≥,
∵25<30<36,
∴5<<6,
∵a和b为两个连续正整数,
∴a=5,b=6,
∴a﹣b=﹣1,
∴﹣1的立方根是﹣1,
故选:A.
【点睛】
本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.
7.A
【分析】
根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.
【详解】
解:由题意可得:∠A=60°,∠CBF=20°,,
∵,
∴∠A+∠ABF=180°,
∴∠ABF=180°﹣∠A
=180°﹣60°
=120°,
∴∠ABC=∠ABF﹣∠CBF
=120°﹣20°
=100°,
故选:A.
【点睛】
本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.
8.D
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(2,4),
∴
解析:D
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(2,4),
∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505……1,
∴点A2021的坐标与A1的坐标相同,为(2,4).
故选:D.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
二、填空题
9.0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根
解析:0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根为1.
故答案是:0或1.
【点睛】
考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
11.101
【分析】
直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.
【详解】
∵在△ABC中,∠A=50°,∠C=72°,
∴∠ABC=180°−50°
解析:101
【分析】
直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.
【详解】
∵在△ABC中,∠A=50°,∠C=72°,
∴∠ABC=180°−50°−72°=58°,
∵BD是△ABC的一条角平分线,
∴∠ABD=29°,
∴∠ADB=180°−50°−29°=101°.
故答案为:101.
【点睛】
此题考查三角形内角和定理,解题关键在于掌握其定理.
12.80°.
【分析】
先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠AEC=100°,
∴∠BEC=180°-100°=80°.
∵DF∥AB,
∴∠D=∠BE
解析:80°.
【分析】
先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠AEC=100°,
∴∠BEC=180°-100°=80°.
∵DF∥AB,
∴∠D=∠BEC=80°.
故答案为:80°.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.
13.【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性
解析:
【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.
14..
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++
解析:.
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++3
=-3-++3
.
故答案为:.
【点晴】
本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.
15.(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.
【详解】
∵点在第二象限,
∴,,
又∵,,
∴,,
∴点的坐标是.
【点睛】
本题主要考查
解析:(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.
【详解】
∵点在第二象限,
∴,,
又∵,,
∴,,
∴点的坐标是.
【点睛】
本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.
16.【分析】
根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.
【详解】
解:由图象可得:动点按图中箭头
解析:
【分析】
根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解.
【详解】
解:由图象可得:动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到,……可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,
∵,
∴经过第2021次运动后,动点P的坐标为;
故答案为.
【点睛】
本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律.
三、解答题
17.(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1
解析:(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1)原式=-(2-4)÷6+3
=+ +3
=3;
(2)原式=
= .
故答案为:(1)3;(2) .
【点睛】
本题考查实数的运算,熟练掌握运算法则是解题的关键.
18.(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
解析:(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
;
(2),
,
,
解得:.
【点睛】
此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.
19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可
解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出;
②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出.
【详解】
解:证明(1)证;
证明:(已知),
(两直线平行,同位角相等),
又(已知)
(等量代换),
(同位角相等,两直线平行),
故答案是:两直线平行,同位角相等;同位角相等,两直线平行.
(2)①与的平分线交于点,交于点,
且,,
,
,
由(1)知,
,
在中,
,
,
,
故答案是:;
②,
,
由(1)知,
,
,
在中,
,
故答案是:.
【点睛】
本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解.
20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)
【分析】
(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;
(2)根据两点坐标求出两点的距离即可;
(3)根
解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)
【分析】
(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;
(2)根据两点坐标求出两点的距离即可;
(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;
(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;
(5)根据同底等高的两个三角形面积相等即可求解.
【详解】
解:(1)如图所示,即为所求;
(2)∵A(-2,3),B(4,3),
∴AB=4-(-2)=6;
(3)∵C(-1,-3),
∴C到x轴的距离为3,到直线AB的距离为6;
(4)∵AB=6,C到直线AB的距离为6,
∴;
(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求
∴P(0,-3);
同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);
∴P(0,-3)或(0,9).
【点睛】
本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.
21.-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−
解析:-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−,
∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3.
【点睛】
此题考查估算无理数的大小,解题关键在于分别求得a、b的值.
二十二、解答题
22.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
二十三、解答题
23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行
解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.
(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.
(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.
【详解】
解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET+∠DET=∠B+∠D.
(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠DET-∠BET=∠D-∠B.
如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET-∠DET=∠B-∠D.
(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,
∵AB∥CD,
∴∠BMD=∠ABM+∠CDM,
∴m=2x+2y,
∴x+y=m,
∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,
∴∠BFD===.
【点睛】
本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.
24.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
25.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.
26.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再
解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;
(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.
∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;
(2)∠BAE+∠MCD=90°.证明如下:
过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.
∵∠E=90°,∴∠BAE+∠ECD=90°.
∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;
(3)①∠BAC=∠PQC+∠QPC.理由如下:
如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.
∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;
②∠PQC+∠QPC+∠BAC=180°.理由如下:
如图4:∵AB∥CD,∴∠BAC=∠ACQ.
∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.
点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.
展开阅读全文