资源描述
人教版七年级数学下册期末综合复习题(及答案)
一、选择题
1.的平方根是()
A.7 B.﹣7 C. D.
2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )
A. B.
C. D.
3.平面直角坐标系中,点M(1,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,假命题是( )
A.对顶角相等
B.两直线平行,内错角相等
C.在同一平面内,垂直于同一直线的两直线平行
D.过一点有且只有一条直线与已知直线平行
5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )
A. B. C. D.
6.下列计算正确的是( )
A.=±2 B.(﹣3)0=0
C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3
7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )
A. B. C. D.
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2021的坐标为( )
A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4)
九、填空题
9.已知实数x,y满足+(y+1)2=0,则x-y的立方根是_____.
十、填空题
10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________.
十一、填空题
11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则
∠AOE=_____.
十二、填空题
12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______.
十三、填空题
13.如图①是长方形纸带,,将纸带沿折叠成图②,再沿折叠成图③,则图③中的的度数是________.
十四、填空题
14.当时,我们把称为x为“和1负倒数”.如:1的“和1负倒数”为;-3的“和1负倒数”为.若,是的“和1负倒数”,是的“和1负倒数”…依次类推,则=______;… = _____.
十五、填空题
15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为,则对应的正整数是_______.
第1列
第2列
第3列
第4列
……
第1行
1
2
5
10
……
第2行
4
3
6
11
……
第3行
9
8
7
12
……
第4行
16
15
14
13
……
第5行
……
……
……
……
……
十六、填空题
16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为__________.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中x的值.
(1)4x2=64;
(2)3(x﹣1)3+24=0.
十九、解答题
19.完成下面的证明.
如图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:∠BAC+∠AGD=180°.
证明:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°( ),
∴∠EFB=∠ADB(等量代换),
∴EFAD( ),
∴∠1=∠BAD( ),
又∵∠1=∠2(已知),
∴∠2=∠ (等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°( ).
二十、解答题
20.在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”.例如:点的“3系置换点”的坐标为,即.
(1)点(2,0)的“2系置换点”的坐标为________;
(2)若点的“3系置换点”的坐标是(-4,11),求点的坐标.
(3)若点(其中),点的“系置换点”为点,且,求的值;
二十一、解答题
21.实数在数轴上的对应点的位置如图所示,.
(1)求的值;
(2)已知的小数部分是,的小数部分是,求的平方根.
二十二、解答题
22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
二十三、解答题
23.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.
(1)如图1,若点E在线段AC上,求证:B+D=BED;
(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;
(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示).
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.如图①,平分,⊥,∠B=450,∠C=730.
(1) 求的度数;
(2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;
(3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据一个正数有两个平方根,它们互为相反数解答即可.
【详解】
,7的平方根是,
的平方根是.
故选:C.
【点睛】
本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0,解题关键是先求出49的算术平方根.
2.C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
解析:C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
3.D
【分析】
根据各个象限点坐标的符号特点进行判断即可得到答案.
【详解】
解:∵1>0,-5<0,
∴点M(1,-5)在第四象限.
故选D.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.
【详解】
解:A、对顶角相等,是真命题,故不符合题意;
B、两直线平行,内错角相等,是真命题,故不符合题意;
C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;
D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;
故选D.
【点睛】
本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.
5.B
【分析】
根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出.
【详解】
解:由翻折可知,∠DAE=2,∠CBF=2,
∵,
∴∠DAB+∠CBA=180°,
∴∠DAE+∠CBF=180°,
即,
∴,
故选:B.
【点睛】
本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.
6.C
【分析】
根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.
【详解】
A.原式=﹣2,故A错误;
B.原式=1,故B错误;
C、(﹣2a2b)2=4a4b2,计算正确;
D、原式=﹣a2,故D错误;
故选C.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
7.D
【分析】
直接利用平行线性质解题即可
【详解】
解:∵直尺的两边互相平行,
∴∠1=∠2,∠3=∠4,
∵三角板的直角顶点在直尺上,
∴∠2+∠4=90°,
∴A,B,C正确.
故选D.
【点睛】
本题考查平行线的基本性质,基础知识扎实是解题关键
8.C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴
解析:C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505•••1,
∴点A2021的坐标与A1的坐标相同,为(3,1).
故选:C.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
九、填空题
9.【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是
解析:
【分析】
先根据非负数的性质列出方程求出x、y的值求x-y的立方根.
【详解】
解:由题意得,x-2=0,y+1=0,
解得x=2,y=-1,
x-y=3,
3的立方根是.
【点睛】
本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
十、填空题
10.【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣
解析:
【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣3).
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.
十一、填空题
11.60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A
解析:60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.
【点睛】
本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.
十二、填空题
12.68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF
解析:68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF=∠DEF=56°,
∴∠DEG=112°,
∴∠AEG=180°-112°=68°.
故答案为:68°.
【点睛】
本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.
十三、填空题
13.180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵A
解析:180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵AD∥BC,
∴∠BFE=∠DEF=α,∠CFE=180°-∠DEF=180°-α,
∴图②中∠CFG=∠CFE-∠BFE=180°-α-α=180°-2α,
∴图③中∠CFE=∠CFG-∠BFE=180°-2α-α=180°-3α.
故答案为:180°-3α.
【点睛】
本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键.
十四、填空题
14.【分析】
根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.
【详解】
解:由“和1负倒数”定义和可得:
,
,
,
……
由此可得出从开
解析:
【分析】
根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.
【详解】
解:由“和1负倒数”定义和可得:
,
,
,
……
由此可得出从开始每3个数为一周期循环,
∵2021÷3=673…2,
∴,,又·.= =1,
∴… ==3,
故答案为:;3.
【点睛】
本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.
十五、填空题
15.138
【分析】
根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n
解析:138
【分析】
根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.
【详解】
解:∵正整数6对应的位置记为,
即表示第2行第3列的数,
∴表示第12行第7列的数,
由1行1列的数字是12-0=12-(1-1)=1,
2行2列的数字是22-1=22-(2-1)=3,
3行3列的数字是32-2=32-(3-1)=7,
…
n行n列的数字是n2-(n-1)=n2-n+1,
∴第12行12列的数字是122-12+1=133,
∴第12行第7列的数字是138,
故答案为:138.
【点睛】
此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.
十六、填空题
16.(-19,8)
【分析】
求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.
【详解】
解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,
解析:(-19,8)
【分析】
求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.
【详解】
解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,
∵−2=1−3×1,−5=1−3×2,−8=1−3×3,
∴A3n横坐标为1−3n,
∴A18横坐标为:1−3×6=−17,
∴A18(−17,6),
把A18向左平移2个单位,再向上平移2个单位得到A20,
∴A20(−19,8).
故答案为:(−19,8).
【点睛】
本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
十七、解答题
17.(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1
解析:(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1)原式=-(2-4)÷6+3
=+ +3
=3;
(2)原式=
= .
故答案为:(1)3;(2) .
【点睛】
本题考查实数的运算,熟练掌握运算法则是解题的关键.
十八、解答题
18.(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)
解析:(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)3+24=0,
∴3(x-1)3=-24,
∴(x-1)3=-8,
∴x-1=-2,
∴x=-1.
【点睛】
本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.
十九、解答题
19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【分析】
先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等
解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【分析】
先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.
【详解】
解:∵AD⊥BC,EF⊥BC(已知),
∴∠EFB=90°,∠ADB=90°(垂直的定义),
∴∠EFB=∠ADB(等量代换),
∴EFAD(同位角相等,两直线平行),
∴∠1=∠BAD(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠2=∠BAD(等量代换),
∴DGBA(内错角相等,两直线平行),
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补
【点睛】
本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键.
二十、解答题
20.(1);(2);(3).
【分析】
(1)根据题中新定义直接将m的值代入即可得出答案;
(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;
(3)根据题中新定义可得出点B的坐标,再根据
解析:(1);(2);(3).
【分析】
(1)根据题中新定义直接将m的值代入即可得出答案;
(2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案;
(3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案.
【详解】
解:(1)点(2,0)的“2系置换点”的坐标为,即;
(2)由题意得:
解得:
点A的坐标为:;
(3)
点为
即点B坐标为
,
为常数,且
.
【点睛】
本题考查了二元一次方程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键.
二十一、解答题
21.(1);(2)
【分析】
(1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可;
(2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可
解析:(1);(2)
【分析】
(1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可;
(2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根.
【详解】
解:(1)由图知:,
,,
;
(2),
整数部分是3,
;
的整数部分是6,
,
,
的平方根为.
【点睛】
本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.
二十二、解答题
22.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
二十三、解答题
23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行
解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)
【分析】
(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.
(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.
(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.
【详解】
解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET+∠DET=∠B+∠D.
(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠DET-∠BET=∠D-∠B.
如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.
∵AB∥ET,AB∥CD,
∴ET∥CD∥AB,
∴∠B=∠BET,∠TED=∠D,
∴∠BED=∠BET-∠DET=∠B-∠D.
(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,
∵AB∥CD,
∴∠BMD=∠ABM+∠CDM,
∴m=2x+2y,
∴x+y=m,
∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,
∴∠BFD===.
【点睛】
本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE
解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.
(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.
(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.
【详解】
(1)∵∠B=45°,∠C=73°,
∴∠BAC=62°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=31°,
∴∠ADE=∠B+∠BAD=45°+31°=76°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°-∠ADE=14°.
(2)同(1),可得,∠ADE=76°,
∵FE⊥BC,
∴∠FEB=90°,
∴∠DFE=90°-∠ADE=14°.
(3)的大小不变.=14°
理由:∵ AD平分∠ BAC,AE平分∠BEC
∴∠BAC=2∠BAD,∠BEC=2∠AEB
∵ ∠BAC+∠B+∠BEC+∠C =360°
∴2∠BAD+2∠AEB=360°-∠B-∠C=242°
∴∠BAD+∠AEB=121°
∵ ∠ADE=∠B+∠BAD
∴∠ADE=45°+∠BAD
∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°
【点睛】
本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.
展开阅读全文