资源描述
一、选择题
1.如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则( )
A. B. C. D.
2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于( )
A.70° B.80° C.90° D.100°
3.给出下列说法:
(1)两条直线被第三条直线所截,同位角相等;
(2)不相等的两个角不是同位角;
(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;
(5)过一点作已知直线的平行线,有且只有一条.
其中真命题的有( )
A.0个 B.1个 C.2个 D.3个
4.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB//DC,则∠CAE的度数为( )
A.25° B.20° C.15° D.10°
5.如图,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有( )
A.1个 B.2个 C.3个 D.4个
6.如图,△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,P为直线AB上一动点,连接PC,则线段PC的最小值是( )
A.3 B.2.5 C.2.4 D.2
7.如图, ,若,,,则下列说法正确的是( )
A. B. C. D.
8.如图,AB∥EF∥CD,EG∥DB,则图中与∠1相等的角(∠1除外)共有( )
A.6个 B.5个 C.4个 D.3个
9.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( )
A.30° B.40° C.60° D.70°
10.直线,,,,则( )
A.15° B.25° C.35 D.20°
二、填空题
11.已知,点、分别为、上的点,点、、为、内部的点,连接、、、、、,于,,,平分,平分,则(小于平角)的度数为______.
12.如图,,BC平分,设为,点E是射线BC上的一个动点,若,则的度数为__________.(用含的代数式表示).
13.如图,已知A1BAnC,则∠A1+∠A2+…+∠An等于__________(用含n的式子表示).
14.如图,已知AB∥CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF的左侧.若将射线EA沿EP折叠,射线FC沿FP折叠,折叠后的两条射线互相垂直,则ÐEPF的度数为 _____.
15.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.
16.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,
则第n个图中的∠A1+∠A2+∠A3+…+∠An+1______.(用含n的代数式表示)
17.已知,,,点,在上,平分,且,下列结论正确得是:__________.
①;
②;
③;
④若,则.
18.如图,已知,平分,,且,则的度数为______.
19.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD.若CD∥BE,∠1=28°,则∠2的度数是______.
20.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______.
三、解答题
21.综合与探究
(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动
(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;
(问题迁移)
(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,
①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.
②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.
22.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
24.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
25.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得.
【详解】
解:如图,分别过、作的平行线和,
,
,
,,
,
,
,
,
又,
,
,
,
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补,④,.
2.B
解析:B
【详解】
因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,
所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.
3.B
解析:B
【详解】
试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;
同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;
平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;
从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;
过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.
故选B.
4.C
解析:C
【分析】
利用平行线的性质和给出的已知数据即可求出的度数.
【详解】
解:,,
,
,,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质,解题的关键是熟记平行线的性质.
5.B
解析:B
【分析】
根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可.
【详解】
∵,
∴,∴正确;
∵,
∴,
∵平分,平分,
∴,,
∴,
∴,
∴,
∴根据已知不能推出,∴错误;错误;
∵,,
∴,
∵,
∴,
∴,∴正确;
即正确的有个,
故选:.
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.
6.C
解析:C
【分析】
当PC⊥AB时,PC的值最小,利用面积法求解即可.
【详解】
解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,
∵当PC⊥AB时,PC的值最小,
此时:△ABC的面积=•AB•PC=•AC•BC,
∴5PC=3×4,
∴PC=2.4,
故选:C.
【点睛】
本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.
7.D
解析:D
【分析】
根据平行线的性质进行求解即可得到答案.
【详解】
解:∵BE∥CD
∴∠ 2+∠C=180°,∠ 3+∠D=180°
∵∠ 2=50°,∠ 3=120°
∴∠C=130°,∠D=60°
又∵BE∥AF,∠ 1=40°
∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°
故选D.
【点睛】
本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
8.B
解析:B
【分析】
根据平行线的性质解答.
【详解】
解:∵AB∥EF∥CD,
∴
∵EG∥DB,
∴,
故选:B.
【点睛】
此题考查平行线的性质:两直线平行,内错角相等,熟记性质定理是正确解题的关键.
9.A
解析:A
【分析】
过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
,
,
,
故选:A.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.
10.A
解析:A
【分析】
分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成.
【详解】
分别过A、B作直线∥AD、∥BC,如图所示,则AD∥BC
∵∥
∴∥BC
∴∠CBF=∠2
∵∥AD
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
二、填空题
11.【分析】
过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.
【详解】
解:过点,做平行于,如下图:
,
,
则,
解析:
【分析】
过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.
【详解】
解:过点,做平行于,如下图:
,
,
则,
,
同理可得:,
令,则,
,则,
则,
,
,
,
平分,平分,
,
,
故答案是:.
【点睛】
本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.
12.或
【分析】
根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据
解析:或
【分析】
根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,列出等量关系求解即可得出结论.
【详解】
解:如图,若点E运动到l1上方,
,
,
平分,
,
,
又,
,
,
解得;
如图,若点E运动到l1下方,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
故答案为:或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键.
13.【分析】
过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.
【详解】
解:如图,过点向右作,过点向右作
,
故答案为:.
【点睛】
本题考查了平行线的性质定理,根据题
解析:
【分析】
过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.
【详解】
解:如图,过点向右作,过点向右作
,
故答案为:.
【点睛】
本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.
14.45°或135°
【分析】
根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.
【详解】
解:如图1,
过作,
,
,
,,
,
,
同理可得,
由折叠可
解析:45°或135°
【分析】
根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.
【详解】
解:如图1,
过作,
,
,
,,
,
,
同理可得,
由折叠可得:,,
,
如图2,
过作,
,
,
,,
,
,
,
由折叠可得:,,
,
综上所述:的度数为或,
故答案为:45°或135°.
【点睛】
本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF的度数.
15.10或28
【分析】
作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然
解析:10或28
【分析】
作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.
【详解】
解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,
∵每秒旋转10°,
∴时间为100°÷10°=10秒;
②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角为270°+10°=280°,
∵每秒旋转10°,
∴时间为280°÷10°=28秒;
综上所述,在第10或28秒时,边CD恰好与边AB平行.
故答案为10或28.
【点睛】
本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.
16.【解析】
分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.
详解:如图①中,∠A1+∠A2=180∘=1×180∘,
如图②中,∠A1+∠A2+∠A3=360∘=2
解析:
【解析】
分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.
详解:如图①中,∠A1+∠A2=180∘=1×180∘,
如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,
如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,
…,
第n个图, ∠A1+∠A2+∠A3+…+∠An+1学会从=,
故答案为.
点睛:平行线的性质.
17.①④
【分析】
①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BO
解析:①④
【分析】
①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BOF,∠FOC=∠AOC=∠AOF,从而计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE-∠COE=∠BOC-∠COE,∠BOE=∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,从而计算出∠OCA=∠BOC=3∠BOE=60°.
【详解】
解:∵BC∥OA,∠B=∠A=100°,
∴∠AOB=∠ACB=180°-100°=80°,
∴∠A+∠AOB=180°,
∴OB∥AC.故①正确;
∵OE平分∠BOF,
∴∠FOE=∠BOE=∠BOF,
∴∠FOC=∠AOC=∠AOF,
∴∠EOC=∠FOE+∠FOC=(∠BOF+∠AOF)=×80°=40°.故②错误;
∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,
∴∠OCB:∠OFB=1:2.故③错误;
∵∠OEB=∠OCA=∠AOE=∠BOC,
∴∠AOE-∠COE=∠BOC-∠COE,
∴∠BOE=∠AOC,
∴∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,
∴∠OCA=∠BOC=3∠BOE=60°.故④正确.
故答案为:①④.
【点睛】
本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.
18.140°
【分析】
延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠AGD,再根据两直线平行,同位角相等可得∠AGD=∠ABF,然后根据角平分线的定义得∠EBF=∠ABF,再根据平
解析:140°
【分析】
延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠AGD,再根据两直线平行,同位角相等可得∠AGD=∠ABF,然后根据角平分线的定义得∠EBF=∠ABF,再根据平行线的性质解答.
【详解】
解:如图,延长DE交AB的延长线于G,
∵,
∴∠D=∠AGD=40°,
∵BFDE,
∴∠AGD=∠ABF=40°,
∵BF平分∠ABE,
∴∠EBF=∠ABF=40°,
∵BFDE,
∴∠BED=180°﹣∠EBF=140°.
故答案为:140°.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
19.56°
【分析】
由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD=180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.
【详解】
解:如
解析:56°
【分析】
由折叠的性质可得∠3=∠1=28°,从而求得∠4=56°,再根据平行线的性质定理求出∠EBD=180°﹣∠4=124°,最后再根据平行线性质定理求出∠2=56°.
【详解】
解:如图,由折叠的性质,可得∠3=∠1=28°,
∴∠4=∠1+∠3=56°,
∵CD∥BE,AC∥BD,
∴∠EBD=180°﹣∠4=124°,
又∵CD∥BE,
∴∠2=180°﹣∠CBD=180°﹣124°=56°.
故答案为:56°.
【点睛】
本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.
20.90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E
解析:90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得.
【详解】
解:过P1作P1Q∥AB,则P1Q∥CD,
∵AB∥CD,
∴∠AEF+∠CFE=180°,
∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,
∵和的角平分线交于点,
∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°;
同理可得:∠P2=(∠AEF+∠CFE)=45°,
∠P3=(∠AEF+∠CFE)=22.5°,
...,
∴,
故答案为:90°,.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.
三、解答题
21.(1);(2)①,理由见解析;②图见解析,或
【分析】
(1)作PQ∥EF,由平行线的性质,即可得到答案;
(2)①过作交于,由平行线的性质,得到,,即可得到答案;
②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.
【详解】
解:(1)作PQ∥EF,如图:
∵,
∴,
∴,,
∵
∴;
(2)①;
理由如下:如图,
过作交于,
∵,
∴,
∴,,
∴;
②当点在延长线时,如备用图1:
∵PE∥AD∥BC,
∴∠EPC=,∠EPD=,
∴;
当在之间时,如备用图2:
∵PE∥AD∥BC,
∴∠EPD=,∠CPE=,
∴.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.
22.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
24.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
25.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
展开阅读全文