1、人教版中学七年级下册数学期末考试题(含答案)一、选择题1如图,下列结论中错误的是()A1与2是同旁内角B1与4是内错角C5与6是内错角D3与5是同位角2四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是()ABCD3在平面直角坐标系中,在第三象限的点是()A(-3,5)B(1,-2)C(-2,-3)D(1,1)4下列四个命题其中正确的个数是( )对顶角相等;在同一平面内,若,与相交,则与也相交;邻补角的平分线互相垂直;在同一平面内,垂直于同一条直线的两条直线互相垂直A1个B2个C3个D4个5如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线
2、于点H,若,现有以下结论:;结论正确的个数是( )A1个B2个C3个D4个6下列运算中:;,错误的个数有( )A1个B2个C3个D4个7在同一个平面内,为50,的两边分别与的两边平行,则的度数为( )A50B40或130C50或130D408如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),按此规律下去,则点A2021的坐标是( )A(673,2021)B(674,2021)C(-673,2021)D(-674,2021)九、填空题925的算术平方根是 _.
3、十、填空题10在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_十一、填空题11已知点A(3a+5,a3)在二、四象限的角平分线上,则a=_十二、填空题12已知,且,请直接写出、的数量关系_十三、填空题13如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则_,_十四、填空题14按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是_十五、填空题15已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是_十六、填空
4、题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标_十七、解答题17计算:(1);(2)十八、解答题18已知a+b5,ab2,求下列各式的值(1)a2+b2;(2)(ab)2十九、解答题19如图,四边形 ABCD 中,A = C = 90 ,BE ,DF 分别是ABC ,ADC 的平分线 试说明 BE / DF 请补充说明过程,并在括号内填上相应理由解:在四边形 ABCD 中, A + ABC + C + ADC = 360A = C = 90(已知
5、)ABC +ADC= ,BE , DF 分别是ABC , ADC 的平分线,1 =ABC , 2= ADC ( )1+2= (ABC + ADC) 1+2= 在FCD 中, C = 90 ,DFC + 2 = 90 ( )1+2=90 (已证)1=DFC ( )BE DF ( )二十、解答题20在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)将 ABC先向下平移2个单位长度,再向右平移5个单位长度得到 A1B1C1,画出 A1B1C1(2)求 A1B1C1的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无
6、限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG4
7、0,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由二十四、解答题24如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP和PBN,分别交射线AM于点C,D(1)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使ACBABD时,ABC的度数是 二十五
8、、解答题25操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .【参考答案】一、选择题1B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形
9、进行判断即可【详解】解:如图,1与2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;1与6是直线a与直线b被直线c所截的内错角,而6与4是邻补角,所以1与4不是内错角,因此选项B符合题意;5与6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;3与5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键2C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个
10、选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C【点睛】本题考查了平移,掌握理解平移的概念是解题关键3C【分析】根据第三象限点的特征,依次判断即可【详解】解:A:,因此在第二象限,故错误;B:,因此在第四象限,故错误;C:,因此在第三象限,故正确;D:,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键4D【分析】分别根据对顶角、邻补角、平行
11、线的判定方法即可解答【详解】对顶角相等,正确;在同一平面内,若,与相交,则与也相交,正确;邻补角之和为180,所以它们平分线的夹角为,即邻补角的平分线互相垂直,正确;在同一平面内,垂直于同一条直线的两条直线互相垂直,正确故选:D【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键5D【分析】根据平行线的性质可得,结合角平分线的定义可判断;再由平角的定义可判断;由平行线的性质可判断;由余角及补角的定义可判断【详解】解:,平分,故正确;,故正确;,故正确;,故正确正确为,故选:D【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平
12、行线的性质是解题的关键6D【分析】对每个选项依次计算判断即可.【详解】,故该项错误;无意义,故该项错误;,故该项错误;,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.7C【分析】如图,分两种情况进行讨论求解即可【详解】解:如图所示,ACBF,ADBE,A=FOD,B=FOD,B=A=50;如图所示,ACBF,ADBE,A=BOD,B+BOD=180,B+A=180,B=130,故选C【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解8B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0
13、,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),3674-1=2021,n=674,所以A 2021(674,2021)故选B【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+
14、1(-n,3n+1)(n为正整数)的规律是解答本题的关键九、填空题95【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根52=25, 25的算术平方根是5考点:算术平方根十、填空题10(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴
15、的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数【详解】解:点(2,1)关于x轴对称的点的坐标是(2,1),故答案为(2,1)【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数关于y轴的对称点,纵坐标不变,横坐标变成相反数十一、填空题11【详解】点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.解析:【详解】点A(3a+5,a-3)在二、四象限的角平分线上
16、,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.十二、填空题12(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图解析:(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案【详解】解:如图所示,过点E作,过点F作,且,故答案为:【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找
17、出相应的角的关系是解题关键十三、填空题1368; 112 【分析】首先根据折叠的性质和平行线的性质求FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求出2的度数【详解】解:延折叠得到,解析:68; 112 【分析】首先根据折叠的性质和平行线的性质求FED的度数,然后根据平角的定义求出1的度数,最后根据平行线的性质求出2的度数【详解】解:延折叠得到,(两直线平行,内错角相等),又,综上,故答案为:68;112【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键十四、填空题14131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=13
18、1,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐解析:(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐标为(4
19、,3)故答案为:(4,3) 【点睛】本题考查点的坐标,利用数形结合思想解题是关键十六、填空题16【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故解析:【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故答案为:【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型十七、解答题17(1)0.5;(2)4【分析】(1)根据立方根,算术平方根
20、的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键十八、解答题18(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2(a+b)22ab,即可求解;(1)根据完全平方公式变形,得到(ab)2a2+b2-2ab,即可求解【详解】解析:(1)21;(2)17【分析】(1)根据完
21、全平方公式变形,得到a2+b2(a+b)22ab,即可求解;(1)根据完全平方公式变形,得到(ab)2a2+b2-2ab,即可求解【详解】解:(1)a+b5,ab2,a2+b2(a+b)22ab522221;(2)a+b5,ab2,(ab)2a2+b2-2ab=21-22=17【点睛】本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键十九、解答题19见解析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判解析:见解析【分析】根据四边形的内角和,可得ABC+ADC=18
22、0,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判定BEDF【详解】在四边形ABCD中,A+ABC+C+ADC=360A=C=90,ABC+ADC=180(四边形的内角和是360),BE,DF分别是ABC,ADC的平分线,1 =ABC , 2= ADC(角平分线定义)1+2= (ABC + ADC) 1+2=90,在FCD中,C=90,DFC+2=90(三角形的内角和是180),1+2=90(已证),1=DFC(等量代换),BEDF(同位角相等,两直线平行 )【点睛】本题主要考查了平行线的判定与性质,关键是掌握三角形、四边形的内角
23、和,以及同位角相等,两直线平行二十、解答题20(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,A1B1C1的面积=【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接二十一、解答题21(1)5;-5(2)0【分
24、析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=5
25、0,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片
26、的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求
27、得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,
28、ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等
29、;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十四、解答题24(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;
30、(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP58;(3)不变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN
31、,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACBCBN,当ACBABD时,则有CBNABD,ABC+CBDCBD+DBNABCDBN,由(1)ABN116,CBD58,ABC+DBN58,ABC29,故答案为:29【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等二十五、解答题25解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)
32、10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=1.5, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.5