1、人教版七年级数学下册期末试题一、选择题1的平方根是()ABCD2下列图中的“笑脸”,由如图平移得到的是()ABCD3在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中:若,则点在原点处;点一定在第四象限已知点与点,m,n均不为0,则直线平行x轴;已知点A(2,-3),轴,且,则B点的坐标为(2,2)以上命题是真命题的有( )A1个B2个C3个D4个5一副直角三角板如图放置,其中FACB90,D45,B60,AB/DC,则CAE的度数为()A25B20C15D106下列说法中正确的是( )1的平方根是1;5是25的算术平方根;(4)
2、2的平方根是4;(4)3的立方根是4;0.01是0.1的一个平方根ABCD7在同一平面内,若A与B的两边分别平行,且A比B的3倍少40,则A的度数为( )A20B55C20或125D20或558如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标()A(2020,0)B(2020,1)C(2021,0)D(2021,1)九、填空题9若a、b为实数,且满足|a2|+0,则ab的立方根为_十、填空题10小明从镜子里看到对面电子钟的像如图所示,那么实际
3、时间是_.十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_十四、填空题14已知M是满足不等式的所有整数的和,N是满足不等式x的最大整数,则MN的平方根为_十五、填空题15在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为_十六、填空题16如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接
4、着运动到点,第三次接着运动到点,按这样的运动规律,经过次运动后,动点的坐标是_十七、解答题17计算:(1) (2)(3) (4)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19阅读下列推理过程,在括号中填写理由已知:如图,点、分别是线段、上的点,平分,交于点求证:平分证明:平分(已知)( )(已知)( )( )(等量代换)( )( )( )( )平分( )二十、解答题20在平面直角坐标系中有三个点、B(5,1)、,是的边上任意一点,经平移后得到,点的对应点为,(1)点到轴的距离是 个单位长度;(2)画出和;
5、(3)求的面积二十一、解答题21阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(1)解答下列问题: (1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,的整数部分为b,求a+b的值;(3)已知12+=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据
6、:=1.414,=1.732,=2.236)二十三、解答题23已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数二十四、解答题24如图1,由线段组成的图形像英文字母,称为“形”(1)如图1,形中,若,则_;(2)如图2,连接形中两点,若,试探求与的数量关系,
7、并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系二十五、解答题25如图,在中,是高,是角平分线,()求、和的度数()若图形发生了变化,已知的两个角度数改为:当,则_当,时,则_当,时,则_当,时,则_()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论【参考答案】一、选择题1A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作【详解】解:的平方根是故选A【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键
8、,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根2D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等【详解】解:A、B、C都是由旋转得到的,D是由平移得到的故选:D【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等【详解】解:A、B、C都是由旋转得到的,D是由平移得到的故选:D【点睛】本题考查平移的基本性质是:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等3B【分析】根据向下平移
9、,纵坐标减,求出点的坐标,再根据各象限内点的特征解答【详解】解:设点P纵坐标为y,点向下平移4个单位后的坐标是,点的坐标为,点在第二象限故选:B【点睛】本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键4B【分析】利用有理数的性质和坐标轴上点的坐标特征可对进行判断;利用或可对进行判断;利用、点的纵坐标相同可对进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对进行判断【详解】解:若,则或,所以点坐标轴上,所以为假命题;,点一定在第四象限,所以为真命题;已知点与点,均不为0,则直线平行轴,所以为真命题;已知点,轴,且
10、,则点的坐标为或,所以为假命题故选:B【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5C【分析】利用平行线的性质和给出的已知数据即可求出的度数【详解】解:,故选:C【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质6B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断【详解】解:1的平方根是1,故说法错误;5是25的算术平方根,故说法正确;(-4)2的平方根是4,故说法错误;(-4)3的立方根是-4,故说法正确;0.1是0.01的一个平方根,
11、故说法错误;综上,正确,故选:B【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键7C【分析】根据A与B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求A得度数【详解】解:两个角的两边分别平行,这两个角大小相等或互补,这两个角大小相等,如下图所示:由题意得,A=B,A=3B-40,A=B=20,这两个角互补,如下图所示:由题意得,综上所述,A的度数为20或125,故选:C【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系8D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为
12、2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解:由题意得:P1(1,1),P2(2,0),P3(2,0),P4(3,1)P5(5,1),P6(6,0),P7(6,0),P8(7,1),由此可以得出规律:每4次翻折为一个循环,若的余数为0,则,(n-1,1);若的余数为1,则,(n,1);若的余数为2,则,(n,0);若的余数为3,则,(n-1,0)
13、;20214=505余1,横坐标即为,(2021,1),故选D.【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.九、填空题9-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:1【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值十、填
14、空题1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后
15、根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据E
16、MD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题1370【分析】由题意易图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易
17、图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键十四、填空题142【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M10122,N是满足不等式x的解析:2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M10122,N是满足不等式x的最大整数,N2,MN的平方根为:2故答案为:2【点睛】此题主要考查了估计无
18、理数的大小,得出M,N的值是解题关键十五、填空题15(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案【详解】解:,a=3,b=4,A(0,3),B(4,0),C(4,6),ABC的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案【详解】解:,a=3,b=4,A(0,3),B(4,0),C(4,6),ABC的面积=64=12,四边形ABOP的面积=AOP的面积+AOB的面积=3(-m)+34=6-m,由题意得,6-m=12,解得,m=-4,点P的坐标为(-4,1),故答案为:(-4,1)【点睛】本题考查的是
19、坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键十六、填空题16(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),当n为奇数时,第n次运动到点(,), 当n为偶数时,第n次运动到点(,
20、),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011)【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标十七、解答题17(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步
21、计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)= ;(4)= =故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
22、(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(已知)(两直
23、线平行,同位角相等)(两直线平行,内错角相等)(等量代换)平分(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连
24、接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解【详解】(1)点到轴的距离是2个单位长度故答案为:2;(2)如图,和为所求作(3)S6111.52.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)解析:(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值
25、;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)的整数部分是3,小数部分是3;(2)23,34a=2,b=3a+b=2+3=1;(3)12,1312+14,x=13,y=1xy=13(1)=14xy的相反数是14【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键二十二、解答题22(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理
26、由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案试题解析:(1)正方形的面积是 25 平方分米,正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则 3x2x=18,x2=3,x1= ,x2=(舍去),3x=35,2x=25 ,即这块正方形工料不合格二十三、解答题23(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHA
27、B解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHC
28、D,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENN
29、EQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键二十四、解答题24(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,解析:(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题(3)分两种情形分别求解即可;【详解】解:(1)过M作MNAB,
30、ABCD,ABMNCD,1=A,2=C,AMC=1+2=A+C=50;故答案为:50;(2)A+C=30+,延长BA,DC交于E,B+D=150,E=30,BAM+DCM=360-(EAM+ECM)=360-(360-E-M)=30+;即A+C=30+;(3)如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,B+D=150,AMC=,E=30由三角形的内外角之间的关系得:1=30+22=3+1=30+3+1-3=30+即:A-C=30+如图所示,210-A=(180-DCM)+,即A-DCM=30-综上所述,A-DCM=30+或30-【点睛】本题考查了平行线的性质解答
31、该题时,通过作辅助线准确作出辅助线lAB,利用平行线的性质(两直线平行内错角相等)将所求的角M与已知角A、C的数量关系联系起来,从而求得M的度数二十五、解答题25(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案【详解】(1), 平分,是高, , , , (2)当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , (3)当 时,即时, 平分,是高, , , ;当 时,即时, 平分,是高, , , ;综上所述,当时,;当时,【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键