资源描述
青岛大学附属中学七年级下册数学期末压轴难题试题及答案解答
一、选择题
1.在下列图形中,与是内错角的是( )
A. B. C. D.
2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A. B. C. D.
3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( )
A.点在第一象限 B.点的横坐标是
C.点到轴的距离是 D.以上都不对
4.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②一个三角形被截成两个三角形,每个三角形的内角和是90度;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是( )
A.2个 B.3个 C.4个 D.5个
5.如图,,的角平分线的反向延长线和是角平分线交于点,,则等于( )
A.42° B.44° C.72° D.76°
6.下列计算正确的是( )
A. B. C. D.
7.如图,中,平分,于点,,,则的度数为( )
A.134° B.124° C.114° D.104°
8.如图,在平面直角坐标系中,点A从原点O出发,按A→A1→A2→A3→A4→A5…依次不断移动,每次移动1个单位长度,则A2021的坐标为( )
A.(673,﹣1) B.(673,1) C.(674,﹣1) D.(674,1)
二、填空题
9.若则 ________.
10.点A(-2,1)关于x轴对称的点的坐标是____________________.
11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.
12.将直角三角板与两边平行的纸条如图放置,若,则__________.
13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°.
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15.如图,若“马”所在的位置的坐标为,“象”所在位置的坐标为,则“将"所在位置的坐标为_______.
16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______.
三、解答题
17.计算:
(1)
(2)
18.求下列各式中的值:
(1);
(2);
(3).
19.如图,已知:,.
求证:.
证明:∵(已知),
∴∠______=∠______(______).
∵(______),
∴∠______(等量代换).
∴(______).
20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).
(1)在平面直角坐标系中画出△ABC;
(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;
(3)求△A′B′C′的面积.
21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为<<,即2<<3,所以的整数部分为2,小数部分为(﹣2)
请解答:
(1)的整数部分是 ,小数部分是 ;
(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.
二十二、解答题
22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.
(1)求原来正方形场地的周长;
(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.
二十三、解答题
23.已知,点为平面内一点,于.
(1)如图1,求证:;
(2)如图2,过点作的延长线于点,求证:;
(3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数.
24.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足.
(1)点的坐标为______;点的坐标为______.
(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由.
(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.
25.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
26.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角定义进行解答即可.
【详解】
解:A、∠1与∠2是同位角,故此选项不合题意;
B、∠1与∠2是同旁内角,故此选项不合题意;
C、∠1与∠2是内错角,故此选项符合题意;
D、∠1与∠2不是内错角,此选项不合题意;
故选:C.
【点睛】
此题主要考查了内错角,关键是掌握内错角的边构成“Z“形.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到.
故选C.
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.C
【分析】
根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.
【详解】
解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意;
B、点的横坐标是−1,原说法错误,该选项不符合题意;
C、点到y轴的距离是1,该选项正确,符合题意;
D、以上都不对,说法错误,该选项不符合题意;
故选:C.
【点睛】
本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.
4.B
【分析】
依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.
【详解】
解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;
②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;
③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;
④两个无理数的和不一定是无理数,是假命题;
⑤坐标平面内的点与有序数对是一一对应的,是真命题;
其中真命题是①③⑤,个数是3.
故选:.
【点睛】
本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.
5.B
【分析】
过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.
【详解】
解:如图,过F作FH∥AB,
∵AB∥CD,
∴FH∥AB∥CD,
∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,
∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,
∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,
∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,
即∠E+2∠BFC=180°,①
又∵∠E-∠BFC=48°,
∴∠E =∠BFC+48°,②
∴由①②可得,∠BFC+48°+2∠BFC=180°,
解得∠BFC=44°,
故选:B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
6.B
【分析】
直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.
【详解】
A、=3,故此选项错误;
B、,故此选项正确;
C、|a|﹣a=0(a≥0),故此选项错误;
D、4a﹣a=3a,故此选项错误;
故选:B.
【点睛】
此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.
7.B
【分析】
已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.
【详解】
解:∵AE平分∠BAC,
∴∠BAE=∠CAE=34°,
∵ED∥AC,
∴∠CAE+∠AED=180°,
∴∠DEA=180°-34°=146°,
∵BE⊥AE,
∴∠AEB=90°,
∵∠AEB+∠BED+∠AED=360°,
∴∠BED=360°-146°-90°=124°,
故选:B.
【点睛】
本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.
8.C
【分析】
根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7
解析:C
【分析】
根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,
点坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,
则2021÷6=336…5,
所以,前336次循环运动点共向右运动336×2=672个单位,且在x轴上,
再运动5次即向右移动2个单位,向下移动一个单位,
则A2021的坐标是(674,﹣1).
故选:C.
【点睛】
本题考查了平面直角坐标系点的规律,找到规律是解题的关键.
二、填空题
9.【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
解析:
【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
10.(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本
解析:(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
11.∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、C
解析:∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、CE为△ABC的两条角平分线,
∴∠ABD=∠ABC,∠ACE=∠ACB,
∵∠1=∠ACE+∠A,∠2=∠ABD+∠A
∴∠1+∠2=∠ACE+∠A+∠ABD+∠A
=∠ABC+∠ACB+∠A+∠A
=(∠ABC+∠ACB+∠A)+∠A
=90°+∠A
故答案为∠1+∠2-∠A=90°.
【点睛】
考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.
12.36
【分析】
先根据平角的定义求出的度数,再根据平行线的性质即可得求解.
【详解】
∵,
∴,
∵,
故答案为:.
【点睛】
本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.
解析:36
【分析】
先根据平角的定义求出的度数,再根据平行线的性质即可得求解.
【详解】
∵,
∴,
∵,
故答案为:.
【点睛】
本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.
13.11
【分析】
由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.
【详解】
解:如图,
,
,
,
,
折叠,
,
,
,
,
故答案为:11.
解析:11
【分析】
由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.
【详解】
解:如图,
,
,
,
,
折叠,
,
,
,
,
故答案为:11.
【点睛】
本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解.
14.或
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1
解析:或
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1,
∵M{3,2x+1,4x-1}=min{2,-x+3,5x},
∴有如下三种情况:
①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立;
②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立;
③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立,
∴x=或,
故答案为或.
【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.
15.【分析】
结合题意,根据坐标的性质分析,即可得到答案.
【详解】
∵“马”所在的位置的坐标为,“象”所在位置的坐标为
∴棋盘中每一格代表1
∴“将"所在位置的坐标为,即
故答案为:.
【点睛】
本
解析:
【分析】
结合题意,根据坐标的性质分析,即可得到答案.
【详解】
∵“马”所在的位置的坐标为,“象”所在位置的坐标为
∴棋盘中每一格代表1
∴“将"所在位置的坐标为,即
故答案为:.
【点睛】
本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.
16.(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点
解析:(4,3)
【分析】
按照反弹规律依次画图即可.
【详解】
解:如图:
根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,
2021÷6=336…5,
即点P2021的坐标是(4,3).
故答案为:(4,3).
【点睛】
本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.
三、解答题
17.(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式=
解析:(1)-5;(2)
【解析】
【分析】
(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;
(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.
【详解】
(1)原式=;
(2)原式= -6+2+1+=.
故答案为:(1)-5;(2) .
【点睛】
本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.
18.(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出
解析:(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.
【详解】
解:(1)x3=0.008,
则x=0.2;
(2)x3-3=
则x3=3+
故x3=
解得:x=;
(3)(x-1)3=64
则x-1=4,
解得:x=5.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C
解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
20.(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′
解析:(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;
(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.
【详解】
解:(1)如图,△ABC为所作;
(2)如图,△A′B′C′为所作;
(3)△A′B′C′的面积=.
【点睛】
本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
21.(1)3, ﹣3;(2)1.
【分析】
(1)根据解答即可;
(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.
【详解】
(1)∵,
∴的整数部分是3,小数部分是﹣3,
解析:(1)3, ﹣3;(2)1.
【分析】
(1)根据解答即可;
(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.
【详解】
(1)∵,
∴的整数部分是3,小数部分是﹣3,
故答案为:3,﹣3;
(2)∵2<<3,a=﹣2,
∵3<<4,
∴b=3,
a+b﹣=﹣2+3﹣=1.
【点睛】
此题考查无理数的估算,正确掌握数的平方是解题的关键.
二十二、解答题
22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为
解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.
【详解】
解:(1)=20(m),4×20=80(m),
答:原来正方形场地的周长为80m;
(2)设这个长方形场地宽为3am,则长为5am.
由题意有:3a×5a=300,
解得:a=±,
∵3a表示长度,
∴a>0,
∴a=,
∴这个长方形场地的周长为 2(3a+5a)=16a=16(m),
∵80=16×5=16×>16,
∴这些铁栅栏够用.
【点睛】
本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.
二十三、解答题
23.(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3
解析:(1)见解析;(2)见解析;(3).
【分析】
(1)先根据平行线的性质得到,然后结合即可证明;
(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;
(3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答.
【详解】
(1)证明:∵,
∴,
∵于,
∴,
∴,
∴;
(2)证明:过作,
∵,
∴,
又∵,
∴,
∴,
∵,
∴,
∴,
∴;
(3)设∠DBE=a,则∠BFC=3a,
∵BE平分∠ABD,
∴∠ABD=∠C=2a,
又∵AB⊥BC,BF平分∠DBC,
∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°
又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°
∴∠BCF=135°-4a,
∴∠AFC=∠BCF=135°-4a,
又∵AM//CN,
∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,
∴135°-4a+135°-4a+2a=180,解得a=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.
24.(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-
解析:(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可;
(3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.
【详解】
解:(1)∵+|b-2|=0,
∴a-2b=0,b-2=0, 解得a=4,b=2,
∴A(0,4),C(2,0).
(2)存在, 理由:如图1中,D(1,2),
由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,
∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,
∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t,
∵S△ODP=S△ODQ,
∴2-t=t,
∴t=1.
(3)结论:的值不变,其值为2.理由如下:如图2中,
∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,
如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,
∴∠PHO=∠GOF=∠1+∠2,
∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,
∴=2.
【点睛】
本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.
25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
26.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文