收藏 分销(赏)

人教版七年级下册数学期末质量检测试卷含答案.doc

上传人:丰**** 文档编号:4879226 上传时间:2024-10-17 格式:DOC 页数:24 大小:585.04KB
下载 相关 举报
人教版七年级下册数学期末质量检测试卷含答案.doc_第1页
第1页 / 共24页
人教版七年级下册数学期末质量检测试卷含答案.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述
人教版七年级下册数学期末质量检测试卷含答案优秀 一、选择题 1.如图,∠B的同位角是( ) A.∠1 B.∠2 C.∠3 D.∠4 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列点中位于第四象限的是( ) A. B. C. D. 4.下列命题是假命题的是(  ) A.同位角相等,两直线平行 B.三角形的一个外角等于与它不相邻的两个内角的和 C.平行于同一条直线的两条直线平行 D.平面内,到一个角两边距离相等的点在这个角的平分线上 5.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为(  ) A.22° B.22.5° C.30° D.45° 6.下列计算正确的是(  ) A. B. C. D. 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是(  ) A.(3038,1) B.(3032,1) C.(2021,0) D.(2021,1) 九、填空题 9.9的算术平方根是 . 十、填空题 10.将点先关于x轴对称,再关于y轴对称的点的坐标为_______. 十一、填空题 11.如图中,,,AD、AF分别是的角平分线和高,________. 十二、填空题 12.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______. 十三、填空题 13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______. 十四、填空题 14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________. 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 十七、解答题 17.(1)计算: (2)计算: (3)已知,求的值. 十八、解答题 18.求下列各式中的x: (1)x2﹣=0. (2)(x﹣1)3=64. 十九、解答题 19.完成下面的证明. 如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF. 分析:要证BE∥DF,只需证∠1=∠D. 证明:∵AB∥CD(已知) ∴∠B+∠1=180°(    ) ∵∠B+∠D=180°(已知) ∴∠1=∠D(    ) ∴BE∥DF(    ) 二十、解答题 20.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题: (1)在坐标系内描出点A、B、C的位置; (2)求出以A、B、C三点为顶点的三角形的面积; (3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由. 二十一、解答题 21.已知:是的整数部分,是的小数部分. 求: (1),值 (2)的平方根. 二十二、解答题 22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二十三、解答题 23.如图,直线,点是、之间(不在直线,上)的一个动点. (1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由; (2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值; (3)如图3,若点是下方一点,平分, 平分,已知,求的度数. 二十四、解答题 24.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 二十五、解答题 25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 【详解】 解:∠B与∠3是DE、BC被AB所截而成的同位角, 故选:C. 【点睛】 本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、在y轴上,故本选项不符合题意; B、在第二象限,故本选项不符合题意; C、在第四象限,故本选项符合题意; D、在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.D 【分析】 利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项. 【详解】 解:A、同位角相等,两直线平行,正确,是真命题,不符合题意; B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意; C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意; D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意; 故选:D. 【点睛】 考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大. 5.B 【分析】 过作,过作,利用平行线的性质解答即可. 【详解】 解:过作,过作, , , ,, ,, ,,, , . 故选:B. 【点睛】 此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答. 6.D 【分析】 根据算术平方根、立方根、二次根式的乘法逐项判断即可得. 【详解】 A、,此项错误; B、,此项错误; C、,此项错误; D、,此项正确; 故选:D. 【点睛】 本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键. 7.D 【分析】 由题意易得,则有,然后根据平行线的性质可求解. 【详解】 解:∵,, ∴, ∵平分, ∴, ∴, ∵, ∴; 故选D. 【点睛】 本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键. 8.B 【分析】 观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6, 解析:B 【分析】 观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解. 【详解】 解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6, ∵2021÷4=505.....1, ∴A2021的纵坐标与A1相同, 横坐标=505×6+2=3032, ∴A2021(3032,1), 故选B. 【点睛】 本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法. 九、填空题 9.【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 解析:【分析】 根据一个正数的算术平方根就是其正的平方根即可得出. 【详解】 ∵, ∴9算术平方根为3. 故答案为3. 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键. 十、填空题 10.(1,-4) 【分析】 直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】 设关于x轴对称的点为 则点的坐标为 解析:(1,-4) 【分析】 直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】 设关于x轴对称的点为 则点的坐标为(-1,-4) 设点和点关于y轴对称 则的坐标为(1,-4) 故答案为:(1,-4) 【点睛】 本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数. 十一、填空题 11.【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵A 解析: 【分析】 根据三角形内角和定理及角平分线的性质求出∠BAD度数,再由三角形内角与外角的性质可求出∠ADF的度数,由AF⊥BC可求出∠AFD=90°,再由三角形的内角和定理即可解答. 【详解】 ∵AF是的高,∴, 在中,, ∴. 又∵在中,,, ∴, 又∵AD平分, ∴, ∴ . 故答案为:. 【点睛】 本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 十二、填空题 12.68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF 解析:68° 【分析】 先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小. 【详解】 解:∵AD//BC,, ∴∠DEF=∠EFG=56°, 由折叠可得,∠GEF=∠DEF=56°, ∴∠DEG=112°, ∴∠AEG=180°-112°=68°. 故答案为:68°. 【点睛】 本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等. 十三、填空题 13.70 【分析】 由题意易图可得,由折叠的性质可得,然后问题可求解. 【详解】 解:由长方形可得:, ∵, ∴, 由折叠可得, ∴; 故答案为70. 【点睛】 本题主要考查平行线的性质及折叠的性质,熟 解析:70 【分析】 由题意易图可得,由折叠的性质可得,然后问题可求解. 【详解】 解:由长方形可得:, ∵, ∴, 由折叠可得, ∴; 故答案为70. 【点睛】 本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键. 十四、填空题 14.101 【分析】 根据“”的定义进行运算即可求解. 【详解】 解:=== =101. 故答案为:101. 【点睛】 本题考查了新定义运算,理解新定义的法则是解题关键. 解析:101 【分析】 根据“”的定义进行运算即可求解. 【详解】 解:=== =101. 故答案为:101. 【点睛】 本题考查了新定义运算,理解新定义的法则是解题关键. 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 十七、解答题 17.(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 或 【解析】 【分析】 (1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果; (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; (3)直接利用平方根的定义计算得出答案. 【详解】 解:(1) , ; (2) , , ; (3)∵ ∴ 解得:或. 故答案为:(1)2;(2)6;(3) 或 【点睛】 本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 十八、解答题 18.(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查 解析:(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法. 十九、解答题 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行 【分析】 要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得. 【详解】 解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行 【分析】 要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得. 【详解】 证明:∵AB∥CD(已知) ∴∠B+∠1=180°(两直线平行,同旁内角互补) ∵∠B+∠D=180°(已知) ∴∠1=∠D(同角的补角相等), ∴BE∥DF(同位角相等,两直线平行) 故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题 20.(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线 解析:(1)见解析;(2)S△ABC=5;(3)存在,P点的坐标为(0,5)或(0,﹣3). 【分析】 (1)根据点的坐标,直接描点; (2)根据点的坐标可知,ABx轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解; (3)因为AB=5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个. 【详解】 解:(1)描点如图; (2)依题意,得ABx轴,且AB=3﹣(﹣2)=5, ∴S△ABC=×5×2=5; (3)存在; ∵AB=5,S△ABP=10, ∴P点到AB的距离为4, 又点P在y轴上, ∴P点的坐标为(0,5)或(0,﹣3). 【点睛】 本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积. 二十一、解答题 21.(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题 解析:(1),. (2). 【分析】 (1)首先得出接近的整数,进而得出a,b的值; (2)根据平方根即可解答. 【详解】 , ∴整数部分,小数部分. (2) 原式 , 则的平方根为. 【点睛】 此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键. 二十二、解答题 22.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二十三、解答题 23.(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以 解析:(1)见解析;(2);(3)75° 【分析】 (1)根据平行线的性质、余角和补角的性质即可求解. (2)根据平行线的性质、对顶角的性质和平角的定义解答即可. (3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可. 【详解】 解:(1)∠C=∠1+∠2, 证明:过C作l∥MN,如下图所示, ∵l∥MN, ∴∠4=∠2(两直线平行,内错角相等), ∵l∥MN,PQ∥MN, ∴l∥PQ, ∴∠3=∠1(两直线平行,内错角相等), ∴∠3+∠4=∠1+∠2, ∴∠C=∠1+∠2; (2)∵∠BDF=∠GDF, ∵∠BDF=∠PDC, ∴∠GDF=∠PDC, ∵∠PDC+∠CDG+∠GDF=180°, ∴∠CDG+2∠PDC=180°, ∴∠PDC=90°-∠CDG, 由(1)可得,∠PDC+∠CEM=∠C=90°, ∴∠AEN=∠CEM, ∴, (3)设BD交MN于J. ∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°, ∴∠PBD=2∠PBC=50°,∠CAM=∠MAD, ∵PQ∥MN, ∴∠BJA=∠PBD=50°, ∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM, 由(1)可得,∠ACB=∠PBC+∠CAM, ∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°. 【点睛】 本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系. 二十四、解答题 24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 二十五、解答题 25.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°, 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服