收藏 分销(赏)

初一数学下册期末几何压轴题试题(带答案).doc

上传人:丰**** 文档编号:4879219 上传时间:2024-10-17 格式:DOC 页数:44 大小:1.76MB
下载 相关 举报
初一数学下册期末几何压轴题试题(带答案).doc_第1页
第1页 / 共44页
初一数学下册期末几何压轴题试题(带答案).doc_第2页
第2页 / 共44页
初一数学下册期末几何压轴题试题(带答案).doc_第3页
第3页 / 共44页
初一数学下册期末几何压轴题试题(带答案).doc_第4页
第4页 / 共44页
初一数学下册期末几何压轴题试题(带答案).doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、一、解答题1如图,在平面直角坐标系中,已知ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得SPOB=SABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究HBM,BMA,MAC之间的数量关系,并证明你的结论.2如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,

2、G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由3已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数4已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:B

3、EDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)5如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA

4、的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由6如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由7下列等式:,将以上三个等式两边分别相加得:(1)观察发现:_

5、 (2)初步应用:利用(1)的结论,解决以下问题“把拆成两个分子为1的正的真分数之差,即 ;把拆成两个分子为1的正的真分数之和,即 ;( 3 )定义“”是一种新的运算,若,求的值8对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a0,且a1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN当a0,且a1,M0,N0时,loga(MN)=logaM+logaN(I)解方程:logx4=2;()log28= ()计算:(lg2)2+lg21g5+1g52018= (直接写答案)9阅读理解

6、:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若bacb,我们称这个多位数为等差数例如:357分成了三个数3,5,7,并且满足:5375;413223分成三个数41,32,23,并且满足:32412332;所以:357和413223都是等差数(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T10对于实数a,我

7、们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3(1)仿照以上方法计算:=_;=_(2)若,写出满足题意的x的整数值_如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次=1,这时候结果为1(3)对100连续求根整数,_次之后结果为1(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是_11对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3(1)仿照以上方法计算:=_;=_(2)若,写出满足题意的x的整数值_如果我们对a连续求根整数,直到结果为1为止例如:对10连续求根整数2次=1,这时候结果为1(3)对100连续求

8、根整数,_次之后结果为1(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是_12阅读材料,回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,则_,_(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/

9、元8公里/元若从下沙江滨站到文海南路站的里程是3.07公里,车费_元,下沙江滨站到金沙湖站里程是7.93公里,车费_元,下沙江滨站到杭州火东站里程是19.17公里,车费_元;若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?13已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化

10、请说明理由,若不变,请求出其值 14如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)15如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CBy轴交y轴负半轴于B(0,b),且|a3|+(b+4)20,S四边形AOBC16(1)求点C的坐标(2)如图2,设D为线段OB上一动点,当ADAC时,ODA的角平分线与CAE的角平分线的反向延长线交于点P,求APD的度数;(点E在x轴的正半轴)(3)如图3,当点D在线段O

11、B上运动时,作DMAD交BC于M点,BMD、DAO的平分线交于N点,则点D在运动过程中,N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由16如图,数轴上两点A、B对应的数分别是1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)3,0,2.5是连动数的是 ;(2)关于x的方程2xmx+1的解满足是连动数,求m的取值范围 ;(3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围17如图,在平面直角坐标系中,四边形各顶点的坐标分别为,现将四边形经过平

12、移后得到四边形,点的对应点的坐标为(1)请直接写点、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由18如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,并且满足(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由;(3)如图2,在(2)

13、的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,之间的数量关系,直接写出结论19先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数,满足,求和的值本题常规思路是将两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由2可得,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品

14、,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,定义新运算:,其中,是常数,等式右边是通常的加法和乘法运算已知,那么_20判断下面方程组的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程解:2-3,得,解得,把代入方程,得,解得原方程组的解为21某企业用规格是170cm40cm的标准板材作为原材料,按照图所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的

15、甲型与乙型板材做侧面或底面,做成如图所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计)一共可裁剪出甲型板材张,乙型板材张; 恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?22李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图

16、的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).23甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b千米/小时(1)A、B两地的距离可以表示为 千米(用含a,b的代数式表示);(2)甲从A到B所用的时间是: 小时(用含a,b的代数式表示);乙从B到A所用的时间是: 小时(用含a,b的代数式表示)(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行甲乙二人在第一次相遇后3小时3

17、6分钟又再次相遇,请问AB两地的距离为多少?24在平面直角坐标系中,点、在坐标轴上,其中、满足(1)求、两点的坐标;(2)将线段平移到,点的对应点为,如图1所示,若三角形的面积为,求点的坐标;(3)平移线段到,若点、也在坐标轴上,如图2所示为线段上的一动点(不与、重合),连接、平分,求证:25某治污公司决定购买10台污水处理设备现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元(1)求x,y的值;(2)如果治污公司购买污水

18、处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案26某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:AB进价(元/部)33003700售价(元/部)38004300(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请

19、通过计算设计所有可能的进货方案27定义一种新运算“ab”:当ab时,ab2a+b;当ab时,ab2ab例如:3(4)23+(4)2,(6)122(6)1224(1)填空:(2)3 ;(2)若(3x4)(2x+3)2(3x4)+(2x+3),则x的取值范围为 ;(3)已知(2x6)(93x)7,求x的取值范围;(4)小明在计算(2x22x+4)(x2+4x6)时随意取了一个x的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由28某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子(1)若现有A型板材150张,B型板材300张,可

20、制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?29某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算)如果仅去程乘出租车而回程时不乘坐此车,并且

21、去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费)如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返问选择哪种计费方式更省钱?(写出过程)30如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18(1)求点的坐标;(2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点

22、出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标【参考答案】*试卷处理标记,请不要删除一、解答题1(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明见解析.【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出SABC=9,SBOP=OP,再根据SPOB=SABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到B

23、H/AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)A(4,0),OA=4,C点x轴负半轴上,AC=6,OC=AC-OA=2,C(-2,0);(2)B(2,3),SABC=63=9,SBOP=OP2=OP,又SPOB=SABC,OP=9=6,点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明如下:把点C往上平移3个单位得到点H,C(-2,0),H(-2,3),又B(2,3),BH/AC; 如图1,当点M在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=BMN+AMN,BMA=HB

24、M+MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=AMN-BMN,BMA=MAC-HBM;综上,BMA=MACHBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.2(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC=4x,EFC=3x

25、,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=ECQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧时,则ECG=x,P

26、CF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等3(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD

27、,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,

28、MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键4(1)见解析;(2)55;(3)【分析】(1)根

29、据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质5(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)

30、来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角

31、等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的6(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:

32、(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,

33、PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点7(1);(2);( 3 )【分析】(1)利用材料中的“拆项法”解答即可;(2)先变形为,再利用(1)中的规律解题;先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可

34、【详解】解:(1)观察发现:,;故答案是:;.(2)初步应用:=;故答案是:;.( 3 )由定义可知:=.故的值为【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题8(I) x=2;() 3; () -2017.【分析】(I)根据对数的定义,得出x2=4,求解即可;()根据对数的定义求解即;()根据loga(MN)=logaM+logaN求解即可【详解】(I)解:logx4=2,x2=4,x=2或x=-2(舍去)()解:8=23,log28=3,故答案为3; ()解:(lg2)2+

35、lg21g5+1g52018= lg2( lg2+1g5) +1g52018= lg2 +1g52018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义9(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,根据等差数的定义可知,进而得出即可(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a

36、、c值,再将符合条件的a、c代入求出b的值,即可求解【详解】解:(1) ,148不是等差数, ,514335是等差数;(2)设这个三位数是M, , , ,这个等差数是3的倍数;(3)由(2)知 ,T是24的倍数, 是8的倍数,2c是偶数,只有当35a也是偶数时才有可能是8的倍数,或4或6或8,当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意;当时,此时若,则,若,则,(144、152是8的倍数),当时,此时若,则,若,则,(216、244是8的倍数),当时,此时若,则,若,则,若,则,(280,288,296是8的倍数),若a是

37、偶数,则c也是偶数时b才有意义,和是c是奇数均不符合题意,当时, ,当时,当时,当时,当时,综上,T为432或456或840或864或888【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键10(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:(1)22=4, 6

38、2=36,52=25,56,=2=2,=5,故答案为2,5;(2)12=1,22=4,且1,x=1,2,3,故答案为1,2,3;(3)第一次:=10,第二次:=3,第三次:=1,故答案为3;(4)最大的正整数是255,理由是:=15,=3,=1,对255只需进行3次操作后变为1,=16,=4,=2,=1,对256只需进行4次操作后变为1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力11(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算

39、和的大小,再由并新定义可得结果;(2)根据定义可知x4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:(1)22=4, 62=36,52=25,56,=2=2,=5,故答案为2,5;(2)12=1,22=4,且1,x=1,2,3,故答案为1,2,3;(3)第一次:=10,第二次:=3,第三次:=1,故答案为3;(4)最大的正整数是255,理由是:=15,=3,=1,对255只需进行3次操作后变为1,=16,=4,=2,=1,对256只需进行4次操作后变为

40、1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力12(1);(2)2;3;6这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得【详解】(1)故答案为:;(2)3.07公里需要2元7.93公里所需费用分为两段即:前4公里2元 ,后

41、3.93公里1元7.93公里所需费用为:(元)公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;公里所需费用为:(元)故答案为:2;3;6由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;乘坐24公里所需费用为:(元)由表格可知:乘坐24公里以上的部分,每一元可以坐8公里7元可以乘坐的地铁最大里程为:(公里)这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于公里小于等于32公里【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键13(1);(2);(3)不变,值为2【分析】(1)根据,即可得出a,b的值

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服