资源描述
一、解答题
1.如图,在平面直角坐标系中,O为坐标原点,点,其中满足,D为直线AB与轴的交点,C为线段AB上一点,其纵坐标为.
(1)求的值;
(2)当为何值时,和面积的相等;
(3)若点C坐标为(-2,1),点M(m,-3)在第三象限内,满足,求m的取值范围.
(注:表示的面积)
2.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
3.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.
(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系: ;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
4.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.
(1)如图1,求证:;
(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;
5.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
(1)求证:∠CAB=∠MCA+∠PBA;
(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;
(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.
6.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.
7.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
(1)计算:和;
(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;
(3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性.
8.观察下来等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:
52×_____=______×25;
(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b的式子表示这类“数字对称等式”的规律是_______.
9.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
(1)计算:和;
(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;
(3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性.
10.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.
(1)请直接写出最小的四位依赖数;
(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.
(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值.
11.规律探究,观察下列等式:
第1个等式:
第2个等式:
第3个等式:
第4个等式:
请回答下列问题:
(1)按以上规律写出第5个等式:= ___________ = ___________
(2)用含n的式子表示第n个等式:= ___________ = ___________(n为正整数)
(3)求
12.阅读下列解题过程:
为了求的值,可设,则,所以得,所以;
仿照以上方法计算:
(1) .
(2)计算:
(3)计算:
13.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.
(1)则a= ,b= ,点C坐标为 ;
(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;
(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.
14.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.
(1)( ),( )
(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数: (注: 三角形三个内角的和为)
(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.
16.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义:
将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“.
例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.
根据以上定义,解决下列问题:
已知点P(3,2).
(1)若点A(a,2),且d(P,A)=5,求a的值;
(2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围;
(3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围.
17.在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(1,n)
(1)m=_____,n=______
(2)点P的坐标是(c,0)
①设∠ABP=,请写出∠BPD和∠PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)
②当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)
18.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合).
(1)直接写出点的坐标;
(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;
(3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由.
19.如图,,是的平分线,和的度数满足方程组,
(1)求和的度数;
(2)求证:.
(3)求的度数.
20.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.
(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;
(2)已知关于x,y的方程组,若a≥﹣2,求x+y的取值范围;
(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.
21.如图,在平面直角坐标系中,已知,点,,,,,满足,
(1)直接写出点,,的坐标及的面积;
(2)如图2,过点作直线,已知是上的一点,且,求的取值范围;
(3)如图3,是线段上一点,
①求,之间的关系;
②点为点关于轴的对称点,已知,求点的坐标.
22.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:
A
B
进价(元/部)
3300
3700
售价(元/部)
3800
4300
(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?
(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.
23.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒.
(1)当时, 平方厘米;当时, 平方厘米;
(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;
(3)若的面积为平方厘米,直接写出值.
24.某小区准备新建个停车位,以解决小区停车难的问题.已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,
(1)该小区新建个地上停车位和个地下停车位各需多少万元?
(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?
(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.
25.阅读材料:
关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为,则全部整数解可表示为(t为整数).
因为解得.因为t为整数,所以t=0或-1.
所以该方程的正整数解为和 .
(1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;
(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;
(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.
26.对,定义一种新的运算,规定:(其中).已知,.
(1)求、的值;
(2)若,解不等式组.
27.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作轴于B,
(1)求a,b的值;
(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,
①求:∠CAB+∠ODB的度数;
②求:∠AED的度数.
28.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环.两灯交叉照射且不间断巡视.若灯转动的速度是度/秒,灯转动的速度是度/秒,且, 满足.若这一带江水两岸河堤相互平行,即,且.根据相关信息,解答下列问题.
(1)__________,__________.
(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射线到达之前,灯转动几秒,两灯的光射线互相平行?
(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.
29.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.
(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?
(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.
(1)求每支铅笔和每块橡皮的批发价各是多少元?
(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1);(2)当时,和面积的相等;(3)m的取值范围是
【分析】
(1)利用非负数的性质求出a,b,c即可.
(2)设点D的坐标为(0,y),根据面积关系,构建方程求出y,再根据△BOC和△AOD面积的相等,构建方程求出t即可.
(3)分两种情形:①当-2<m<0时,如图1中,②当m≤-2时,如图2中,根据S△MOC≥5,构建不等式求解即可.
【详解】
解:(1)∵|a-2|+(b-3)2+=0,
又∵|a-2|≥0,(b-3)2≥0,≥0,
∴,
∴a=2,b=3,c=-4;
(2)设点D的坐标为(0,y),
则S△BOD=×BO×OD=×4×y=2y,
S△AOD=xA•OD=×2y=y,
S△AOB=×OB•yA=×4×3=6,
∵S△BOD+S△AOD=S△AOB,即2y+y=6,
解得y=2,即点D的坐标为(0,2),
∴S△BOC=BO•yc=×4t=2t,S△AOD=xA•OD=×2×2=2,
∵△BOC和△AOD面积的相等,即2t=2,
解得t=1,
∴当t=1时,△BOC和△AOD面积的相等;
(3)①当-2<m<0时,如图1中,
过点C作CF⊥轴于点F,过点M作GE⊥轴于点E,过点C作CG⊥轴交GE于点G,
则四边形CGEF为矩形,
∵SCGEF=2×4=8,S△CFO=×2×1=1,
S△EMO=×(0−m)×3=−m,S△CMG=×(m+2)×4=2(m+2),
∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8−1−(−m)−2(m+2)=3−m,
∵S△MOC≥5,即3−m≥5,解得m≤-4,
这与-2<m<0矛盾.
②当m≤-2时,如图2中,
过点C作GF⊥轴于点F,过点M作ME⊥轴于点E,过点M作MG⊥轴交GF于点G,
则四边形MEFG为矩形,
∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,
S△EMO=×(0−m)×3=−m,S△CMG=×(−2−m)×4=−2(m+2),
∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=−4m−1−(−m)−[−2(m+2)]=3−m,
∵S△MOC≥5,即3−m≥5,解得m≤-4,
综上所述,m的取值范围是m≤-4.
【点睛】
本题考查了坐标与图形的性质,三角形的面积,非负数的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考压轴题.
2.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
3.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.
【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).
又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP平分∠AMH,
∴∠PMH=∠AMH=(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.
∵∠ENH=∠HND.
∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.
∴∠ENQ+(HND+∠BMH)=130°.
∴∠ENQ+∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:如图,过点作,
∴,
∵,
∴.
∴.
∵,
∴,
∴.
(2)补全图形如图2、图3,
猜想:或.
证明:过点作.
∴.
∵,
∴
∴,
∴.
∵平分,
∴.
如图3,当点在上时,
∵平分,
∴,
∵,
∴,
即.
如图2,当点在上时,
∵平分,
∴.
∴.
即.
【点睛】
本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.
5.(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;
(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.
【详解】
解:(1)证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
(2)如图2,∵CD∥AB,
∴∠CAB+∠ACD=180°,
∵∠ECM+∠ECN=180°,
∵∠ECN=∠CAB
∴∠ECM=∠ACD,
即∠MCA+∠ACE=∠DCE+∠ACE,
∴∠MCA=∠DCE;
(3)∵AF∥CG,
∴∠GCA+∠FAC=180°,
∵∠CAB=60°
即∠GCA+∠CAB+∠FAB=180°,
∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,
由(1)可知,∠CAB=∠MCA+∠ABP,
∵BF平分∠ABP,CG平分∠ACN,
∴∠ACN=2∠GCA,∠ABP=2∠ABF,
又∵∠MCA=180°﹣∠ACN,
∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,
∴∠GCA﹣∠ABF=60°,
∵∠AFB+∠ABF+∠FAB=180°,
∴∠AFB=180°﹣∠FAB﹣∠FBA
=180°﹣(120°﹣∠GCA)﹣∠ABF
=180°﹣120°+∠GCA﹣∠ABF
=120°.
【点睛】
本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.
6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;
(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BMHD,则HDGEBM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BPHDGE,过F作FQHDGE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,
∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PKHDGE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,
∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=∠HAP+∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,
∴∠PCN=90°﹣∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,
即:∠N=90°﹣∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
7.(1);(2)见解析;(3)
【分析】
(1)根据的定义,可以直接计算得出;
(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;
(3)根据(2)中的结论,猜想:.
【详解】
解:(1)已知,所以新的三个数分别是:,
这三个新三位数的和为,
;
同样,所以新的三个数分别是:,
这三个新三位数的和为,
.
(2)设,得到新的三个数分别是:,
这三个新三位数的和为,
可得到:,即等于x的各数位上的数字之和.
(3)设,由(2)的结论可以得到:
,
,
,
根据三位数的特点,可知必然有:
,
,
故答案是:.
【点睛】
此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.
8.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].
【分析】
(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;
(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.
【详解】
解:(1)∵5+2=7,
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25,
(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;
右边的两位数是10a+b,三位数是100b+10(a+b)+a;
“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].
故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].
【点睛】
本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.
9.(1);(2)见解析;(3)
【分析】
(1)根据的定义,可以直接计算得出;
(2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:;
(3)根据(2)中的结论,猜想:.
【详解】
解:(1)已知,所以新的三个数分别是:,
这三个新三位数的和为,
;
同样,所以新的三个数分别是:,
这三个新三位数的和为,
.
(2)设,得到新的三个数分别是:,
这三个新三位数的和为,
可得到:,即等于x的各数位上的数字之和.
(3)设,由(2)的结论可以得到:
,
,
,
根据三位数的特点,可知必然有:
,
,
故答案是:.
【点睛】
此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同.
10.(1)1022;(2)3066,2226;(3)
【分析】
(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;
(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;
(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=,再比较大小即可.
【详解】
解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;
(2)设千位数字是x,百位数字是y,根据“依赖数”定义,
则有:十位数字是(2x﹣y),个位数字是(2x+y),
根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),
∵21(4y+x)+(4y+x)被7除余3,
∴4y+x=3+7k,(k是非负整数)
∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);
∴特色数是3066,2226.
(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,
由(2)可知:特色数有3066和2226两个,
对于3066=613×5+14=61×50+24
∵1×613-1×5>2×61-2×50,
∴3066取最小分解时:n=2,p=50,q=61
∴F(3066)=
对于2226=89×25+14=65×34+24,
∵1×89-1×25>2×65-2×34,
∴2226取最小分解时:n=2,p=34,q=65
∴F(2226)=
∵
故所有“特色数”的F(m)的最大值为:.
【点睛】
此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.
11.(1);;(2);;(3).
【分析】
(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;
(2)根据前4个等式归纳类推出一般规律即可;
(3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.
【详解】
(1)观察前4个等式的分母可知,第5个式子的分母为
则第5个式子为:
故应填:;;
(2)第1个等式的分母为:
第2个等式的分母为:
第3个等式的分母为:
第4个等式的分母为:
归纳类推得,第n个等式的分母为:
则第n个等式为:(n为正整数)
故应填:;;
(3)由(2)的结论得:
则
.
【点睛】
本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.
12.(1);(2);(3).
【分析】
仿照阅读材料中的方法求出所求即可.
【详解】
解:(1)根据
得:
(2)设,
则,
∴,
∴
即:
(3)设,
则,
∴,
∴
即:
同理可求⸫
∵
【点睛】
此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.
13.(1);(2);(3)不变,值为2.
【分析】
(1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标;
(2)过点D分别作DM⊥x轴于点M, DN⊥y轴于点N,连接OD,在中用等面积法即可求出m和n的关系式;
(3)分别过点E,F作EP∥OA, FQ∥OA分别交y轴于点P,点Q,根据平行线的性质,得出 进而得到的值.
【详解】
(1)解:∵,
∴
展开阅读全文