1、中考数学压轴题专题平行四边形的经典综合题附答案解析一、平行四边形1在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE2b,且边AD和AE在同一直线上操作示例当2ba时,如图1,在BA上选取点G,使BGb,连结FG和CG,裁掉FAG和CGB并分别拼接到FEH和CHD的位置构成四边形FGCH思考发现小明在操作后发现:该剪拼方法就是先将FAG绕点F逆时针旋转90到FEH的位置,易知EH与AD在同一直线上连结CH,由剪拼方法可得DH=BG,故CHDCGB,从而又可将CGB绕点C顺时针旋转90到CHD的位置这样,对于剪拼得到的四边形FGCH(如图1),过点F作FMAE于点M(图略),利用
2、SAS公理可判断HFMCHD,易得FH=HC=GC=FG,FHC=90进而根据正方形的判定方法,可以判断出四边形FGCH是正方形实践探究(1)正方形FGCH的面积是 ;(用含a, b的式子表示)(2)类比图1的剪拼方法,请你就图2图4的三种情形分别画出剪拼成一个新正方形的示意图联想拓展小明通过探究后发现:当ba时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移当ba时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析【解析】分析:实践探究:根
3、据正方形FGCH的面积=BG2+BC2进而得出答案;应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半注意当b=a时,也可直接沿正方形的对角线分割详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;剪拼方法如图2-图4;联想拓展:能,剪拼方法如图5(图中BG=DH=b)点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的2操作与证明:如图1,把一个含45角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角
4、板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF取AF中点M,EF的中点N,连接MD、MN(1)连接AE,求证:AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论结论1:DM、MN的数量关系是 ;结论2:DM、MN的位置关系是 ;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三
5、角形的知识证明出CE=CF,继而证明出ABEADF,得到AE=AF,从而证明出AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MNAE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到DMN=DGE=90从而得到DM、MN的位置关系是垂直.试题解析:(
6、1)四边形ABCD是正方形,AB=AD=BC=CD,B=ADF=90,CEF是等腰直角三角形,C=90,CE=CF,BCCE=CDCF,即BE=DF,ABEADF,AE=AF,AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;在RtADF中DM是斜边AF的中线,AF=2DM,MN是AEF的中位线,AE=2MN,AE=AF,DM=MN;DMF=DAF+ADM,AM=MD,FMN=FAE,DAF=BAE,ADM=DAF=BAE,DMN=FMN+DMF=DAF+BAE+FAE=BAD=90,DMMN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,点M为AF的
7、中点,点N为EF的中点,MNAE,MN=AE,由已知得,AB=AD=BC=CD,B=ADF,CE=CF,又BC+CE=CD+CF,即BE=DF,ABEADF,AE=AF,在RtADF中,点M为AF的中点,DM=AF,DM=MN,ABEADF,1=2,ABDF,1=3,同理可证:2=4,3=4,DM=AM,MAD=5,DGE=5+4=MAD+3=90,MNAE,DMN=DGE=90,DMMN所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质3如图,在RtABC中,B=90,AC=60cm,A=60,点D从点C出发沿CA方向以4c
8、m/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动设点D、E运动的时间是t秒(0t15)过点D作DFBC于点F,连接DE,EF(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由【答案】(1)见解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边
9、形AEFD是菱形,据此即可列方程求得t的值;(3)DEF为直角三角形,分EDF=90和DEF=90两种情况讨论.【详解】解:(1)证明:在RtABC中,C=90A=30,AB=AC=60=30cm,CD=4t,AE=2t,又在RtCDF中,C=30,DF=CD=2t,DF=AE;(2)能,DFAB,DF=AE,四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即604t=2t,解得:t=10,当t=10时,AEFD是菱形;(3)若DEF为直角三角形,有两种情况:如图1,EDF=90,DEBC,则AD=2AE,即604t=22t,解得:t=,如图2,DEF=90,DEAC,则AE
10、=2AD,即,解得:t=12,综上所述,当t=或12时,DEF为直角三角形.4在正方形ABCD中,点E,F分别在边BC,CD上,且EAF=CEF=45.(1)将ADF绕着点A顺时针旋转90,得到ABG(如图),求证:AEGAEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,EAF=GAE=45,故可证AEGA
11、EF;(2)将ADF绕着点A顺时针旋转90,得到ABG,连结GM由(1)知AEGAEF,则EG=EF再由BME、DNF、CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明GME=90,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将ADF绕着点A顺时针旋转90,得到ABG,根据旋转的性质可以得到ADFABG,则DF=BG,再证明AEGAEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF试题解析:(1)ADF绕着点A顺时针旋转90,得到ABG,AF=AG,FAG=90,EAF=45,GAE=45,在A
12、GE与AFE中,AGEAFE(SAS);(2)设正方形ABCD的边长为a将ADF绕着点A顺时针旋转90,得到ABG,连结GM则ADFABG,DF=BG由(1)知AEGAEF,EG=EFCEF=45,BME、DNF、CEF均为等腰直角三角形,CE=CF,BE=BM,NF=DF,aBE=aDF,BE=DF,BE=BM=DF=BG,BMG=45,GME=45+45=90,EG2=ME2+MG2,EG=EF,MG=BM=DF=NF,EF2=ME2+NF2;(3)EF2=2BE2+2DF2如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将ADF绕着点A顺时针旋转90,得到AGH,连结HM,HE
13、由(1)知AEHAEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BMGM)2=EH2又EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BEGH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题5如图,正方形ABCD的边长为8,E为BC上一定点,BE6,F为AB上一动点,把BEF沿EF折叠,点B落在点B处,当AFB恰好为直角三角形时,BD的长为?【答案】或【解析】【分析】分两种情况分析:如图1,当ABF=90时,此时A、B、E三点共线,过点B作BMAB,BNAD,由三角形的面积法则可求得BM=2.4,再由勾股定理可求得BN=3.2,在
14、RtCBN中,由勾股定理得,BD=;如图2,当AFB=90时,由题意可知此时四边形EBFB是正方形,AF=2,过点B作BNAD,则四边形AFBN为矩形,在RtCBN中,由勾股定理得,BD=;【详解】如图1,当ABF=90时,此时A、B、E三点共线,B=90,AE=10,BE=BE=6,AB=4,BF=BF,AF+BF=AB=8,在RtABF中,ABF=90,由勾股定理得,AF2=FB2+AB2,AF=5,BF=3,过点B作BMAB,BNAD,由三角形的面积法则可求得BM=2.4,再由勾股定理可求得BN=3.2,AN=BM=2.4,DN=AD-AN=8-2.4=5.6,在RtCBN中,由勾股定理
15、得,BD= = ;如图2,当AFB=90时,由题意可知此时四边形EBFB是正方形,AF=2,过点B作BNAD,则四边形AFBN为矩形,AN=BF=6,BN=AF=2,DN=AD-AN=2,在RtCBN中,由勾股定理得,BD= = ;综上,可得BD的长为或.【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.6如图,四边形是知形,点是线段上一动点(不与重合),点是线段延长线上一动点,连接交于点.设,已知与之间的函数关系如图所示.(1)求图中与的函数表达式;(2)求证:;(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;
16、如果不存在,说明理由【答案】(1)y2x+4(0x2);(2)见解析;(3)存在,x或或【解析】【分析】(1)利用待定系数法可得y与x的函数表达式;(2)证明CDEADF,得ADFCDE,可得结论;(3)分三种情况:若DEDG,则DGEDEG,若DEEG,如图,作EHCD,交AD于H,若DGEG,则GDEGED,分别列方程计算可得结论【详解】(1)设ykx+b,由图象得:当x1时,y2,当x0时,y4,代入得:,得,y2x+4(0x2);(2)BEx,BC2CE2x,四边形ABCD是矩形,CDAF90,CDEADF,ADFCDE,ADF+EDGCDE+EDG90,DEDF;(3)假设存在x的值
17、,使得DEG是等腰三角形,若DEDG,则DGEDEG,四边形ABCD是矩形,ADBC,B90,DGEGEB,DEGBEG,在DEF和BEF中,DEFBEF(AAS),DEBEx,CE2x,在RtCDE中,由勾股定理得:1+(2x)2x2,x;若DEEG,如图,作EHCD,交AD于H,ADBC,EHCD,四边形CDHE是平行四边形,C90,四边形CDHE是矩形,EHCD1,DHCE2x,EHDG,HGDH2x,AG2x2,EHCD,DCAB,EHAF,EHGFAG,(舍),若DGEG,则GDEGED,ADBC,GDEDEC,GEDDEC,CEDF90,CDEDFE,CDEADF,2x,x,综上,
18、x或或【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键7如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:yx+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EFx轴交直线AB于点F,以EF为一边向右作正方形EFGH(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t0)当点F1
19、移动到点B时,求t的值;当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与APE重叠部分的面积【答案】(1)EF15;(2)10;120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-x+40,可求出P点坐标,进而求出F点坐标即可;(2)易求B(0,5),当点F1移动到点B时,t=10=10;F点移动到F的距离是t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在RtFNF中,=,EM=NG=15-FN=15-3t,在RtDMH中,t=4,S=(12+)11=;当点G运动到直线DE上时,在RtFPK中,
20、=,PK=t-3,FK=3t-9,在RtPKG中,t=7,S=15(15-7)=120.【详解】(1)设直线DE的直线解析式ykx+b,将点E(30,0),点D(0,40),yx+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),EF15;(2)易求B(0,5),BF10,当点F1移动到点B时,t1010;当点H运动到直线DE上时,F点移动到F的距离是t,在RtFNF中,=,FNt,FN3t,MHFNt,EMNG15FN153t,在RtDMH中,t4,EM3,MH4,S;当点G运动到直线DE上时,F点移动到F的距离是t,PF3,PFt3,在RtFPK中,PKt3,FK3
21、t9,在RtPKG中,t7,S15(157)120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键8如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF,EF. FH平分交BD于点H.(1)求证:;(2)求证:(3)过点H作于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3),证明详见解析.【解析】【分析】(1)根据正方形性质, 得到.(2)由,得.由,平分,得.
22、因为平分,所以.由于,所以.(3)过点作于点,由正方形性质,得.由平分,得.因为,所以.由,得.【详解】(1)证明:四边形是正方形,.。.(2)证明:,.,.,平分,.平分,.,.(3).证明:过点作于点,如图,正方形中,.平分,.,.,.【点睛】本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.9在中,于点,点为边的中点,过点作,交的延长线于点,连接如图,求证:四边形是矩形;如图,当时,取的中点,连接、,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形)【答案】(1) 证明
23、见解析;(2)四边形、四边形、四边形、四边形、四边形都是平行四边形【解析】【分析】(1)由AEFCED,推出EF=DE,又AE=EC,推出四边形ADCF是平行四边形,只要证明ADC=90,即可推出四边形ADCF是矩形(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形【详解】证明:,是中点,在和中,四边形是平行四边形,四边形是矩形线段、线段、线段都是的中位线,又,四边形、四边形、四边形、四边形、四边形都是平行四边形【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.10
24、如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P作PEPC交直线AB于E(1) 求证:PC=PE;(2) 延长AP交直线CD于点F.如图2,若点F是CD的中点,求APE的面积;若APE的面积是,则DF的长为 (3) 如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PNCD交EC于点N,连接QN,若PQ=5,MN=,则MNQ的面积是 【答案】(1)略;(2)8,4或9;(3)【解析】【分析】(1)利用正方形每个角都是90,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(
25、2)作出ADP和DFP的高,由面积法容易求出这个高的值.从而得到PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:点P在对角线BD上,ADPCDP,AP=CP, DAP =DCP,PEPC,EPC=EPB+BPC=90,PEA=EBP+EPB=45+90-BPC=135-BPC,PAE=90-DAP90-DCP,DCP=BPC-PDC=BPC-45,PAE=90-(BPC-45)= 135-BPC,PEA=PAE,PC=PE;(2)如图2,过点P分别作PHAD,PGCD,垂足
26、分别为H、G.延长GP交AB于点M.四边形ABCD是正方形,P在对角线上,四边形HPGD是正方形,PH=PG,PMAB,设PH=PG=a,F是CD中点,AD6,则FD=3,=9,=,解得a=2,AM=HP=2,MP=MG-PG=6-2=4,又PA=PE, AM=EM,AE=4,=,设HPb,由可得AE=2b,MP=6-b,=,解得b=2.4,=,当b=2.4时,DF=4;当b3.6时,DF9,即DF的长为4或9;(3)如图,E、Q关于BP对称,PNCD,12,2+3BDC=45,1+4=45,3=4,易证PEMPQM, PNQPNC,5=6, 7=8 ,EM=QM,NQ=NC,6+7=90,M
27、NQ是直角三角形,设EM=a,NC=b列方程组,可得ab=,【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.11定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等理解:如图,在ABC中,CD是AB边上的中线,那么ACD和BCD是“友好三角形”,并且SACD=SBCD应用:如图,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF
28、与BE交于点O(1)求证:AOB和AOE是“友好三角形”;(2)连接OD,若AOE和DOE是“友好三角形”,求四边形CDOF的面积探究:在ABC中,A=30,AB=4,点D在线段AB上,连接CD,ACD和BCD是“友好三角形”,将ACD沿CD所在直线翻折,得到ACD,若ACD与ABC重合部分的面积等于ABC面积的,请直接写出ABC的面积【答案】(1)见解析;(2)12;探究:2或2【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得AOE和AOB是友好三角形;(2)AOE和DOE是“友好三角形”,即
29、可得到E是AD的中点,则可以求得ABE、ABF的面积,根据S四边形CDOF=S矩形ABCD-2SABF即可求解探究:画出符合条件的两种情况:求出四边形ADCB是平行四边形,求出BC和AD推出ACB=90,根据三角形面积公式求出即可;求出高CQ,求出ADC的面积即可求出ABC的面积试题解析:(1)四边形ABCD是矩形,ADBC,AE=BF,四边形ABFE是平行四边形,OE=OB,AOE和AOB是友好三角形(2)AOE和DOE是友好三角形,SAOE=SDOE,AE=ED=AD=3,AOB与AOE是友好三角形,SAOB=SAOE,AOEFOB,SAOE=SFOB,SAOD=SABF,S四边形CDOF
30、=S矩形ABCD-2SABF=46-243=12探究:解:分为两种情况:如图1,SACD=SBCDAD=BD=AB,沿CD折叠A和A重合,AD=AD=AB=4=2,ACD与ABC重合部分的面积等于ABC面积的,SDOC=SABC=SBDC=SADC=SADC,DO=OB,AO=CO,四边形ADCB是平行四边形,BC=AD=2,过B作BMAC于M,AB=4,BAC=30,BM=AB=2=BC,即C和M重合,ACB=90,由勾股定理得:AC=,ABC的面积是BCAC=22=2;如图2,SACD=SBCDAD=BD=AB,沿CD折叠A和A重合,AD=AD=AB=4=2,ACD与ABC重合部分的面积等
31、于ABC面积的,SDOC=SABC=SBDC=SADC=SADC,DO=OA,BO=CO,四边形ABDC是平行四边形,AC=BD=2,过C作CQAD于Q,AC=2,DAC=BAC=30,CQ=AC=1,SABC=2SADC=2SADC=2ADCQ=221=2;即ABC的面积是2或2考点:四边形综合题12如图,AB为O的直径,点E在O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交O于点F,交切线于点C,连接AC(1)求证:AC是O的切线;(2)连接EF,当D=时,四边形FOBE是菱形【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出,根据圆的位
32、置关系证得AC是O的切线.(2)根据四边形FOBE是菱形,得到OF=OB=BF=EF,得证为等边三角形,而得出,根据三角形内角和即可求出答案.【详解】(1)证明:CD与O相切于点E,又,OBE=COAOE=OB,又OC=OC,OA=OE,又AB为O的直径,AC为O的切线;(2)解:四边形FOBE是菱形,OF=OB=BF=EF,OE=OB=BE,为等边三角形,而,故答案为30【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.13如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是ACP的平分线上一点,若A
33、MN=60,求证:AM=MN(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是DCP的平分线上一点,若AMN=90,则AM=MN是否成立?若成立,请证明;若不成立,说明理由(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2An“,其它条件不变,请你猜想:当An2MN=_时,结论An2M=MN仍然成立(不要求证明) 【答案】【解析】分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明AEMMCN,然后根据全等三角形的对应边成比例得出AM=MN(2)同(1),要证明AM=MN,可证AM与MN所在的
34、三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明AEMMCN,然后根据全等三角形的对应边成比例得出AM=MN详(1)证明:在边AB上截取AE=MC,连接ME在正ABC中,B=BCA=60,AB=BCNMC=180-AMN-AMB=180-B-AMB=MAE,BE=AB-AE=BC-MC=BM,BEM=60,AEM=120N是ACP的平分线上一点,ACN=60,MCN=120在AEM与MCN中,MAE=NMC,AE=MC,AEM=MCN,AEMMCN(ASA),AM=MN(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME正方形ABCD中,B=BCD=90
35、,AB=BCNMC=180-AMN-AMB=180-B-AMB=MAB=MAE,BE=AB-AE=BC-MC=BM,BEM=45,AEM=135N是DCP的平分线上一点,NCP=45,MCN=135在AEM与MCN中,MAE=NMC,AE=MC,AEM=MCN,AEMMCN(ASA),AM=MN(3)由(1)(2)可知当An-2MN等于n边形的内角时,结论An-2M=MN仍然成立;即An-2MN=时,结论An-2M=MN仍然成立;故答案为点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力难度较大14如图,点E是正方形ABCD的边AB上
36、一点,连结CE,过顶点C作CFCE,交AD延长线于F求证:BE=DF.【答案】证明见解析.【解析】分析:根据正方形的性质,证出BC=CD,B=CDF,BCD=90,再由垂直的性质得到BCE=DCF,然后根据“ASA”证明BCEBCE即可得到BE=DF详解:证明:CFCE,ECF=90,又BCG=90,BCE+ECD =DCF+ECDBCE=DCF,在BCE与DCF中,BCE=DCF,BC=CD,CDF=EBC,BCEBCE(ASA),BE=DF.点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键15正方形ABCD的边长为1,对角线AC与BD相交于点O,点E
37、是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90,使点C落在点P处,连接AP,设APE的面积为S,试求S与x的函数关系式并求出S的最大值【答案】(1)x=1;(2)S=(x)2+(0x1),当x=时,S的值最大,最大值为,【解析】试题分析:(1)过O作OMAB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PGAB交AB的
38、延长线于G,如图2,根据已知条件得到ECB=PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1x)x,根据二次函数的性质即可得到结论试题解析:(1)过O作OMAB交CE于点M,如图1,OA=OC,CM=ME,AE=2OM=2OF,OM=OF,BF=BE=x,OF=OM=,AB=1,OB=,x=1;(2)过P作PGAB交AB的延长线于G,如图2,CEP=EBC=90,ECB=PEG,PE=EC,EGP=CBE=90,在EPG与CEB中,EPGCEB,EB=PG=x,AE=1x,S=(1x)x=x2+x=(x)2+,(0x1),0,当x=时,S的值最大,最大值为,考点:四边形综合题